бесплатно рефераты
 

Концепции современного естествознания

p align="left">Автором первой эфирной теории света был голландский математик, астроном и физик Христиан Гюйгенс. Согласно его теории всякое светящееся тело порождает волны, которые, распространяясь во все стороны, достигают глаз наблюдателя. Подобно колебаниям, вызванным звоном колокола. Но если ударить в колокол, находящийся в пустоте, звона не будет. Тогда как свет, в отличие от звука, отлично распространяется в вакууме, несмотря на отсутствие среды, способной передавать колебания. Это обстоятельство заставило Гюйгенса наполнить пустоту неким гипотетическим эфиром, способным передавать волны света.

Эфир означает по-гречески “воздух”, “небо”, “верхние сферы”. Работники радио и телевидения до сих пор говорят о том, что они готовят передачи для “вещания в эфир”. Древнее слово оказалось живучим.

Ньютон безоговорочно принял понятие эфира, считая идею воздействия одного тела на другое на расстоянии в вакууме абсурдной.

Какова бы ни была его природа, эфир, по убеждению ученых, наполнял собой все пространство, пронизывал все вещество, проникая между всеми атомами.

Свойства света и в самом деле были таковы, что их нельзя было объяснить, не прибегая к среде, способной передавать волновое излучение на миллионы километров, не ослабляя его энергию. Но существует ли эта среда на самом деле? А если существует, то покоится ли он неподвижно или находится в непрерывном движении?

Английский математик и физик Стокс утверждал, что Земля, вращаясь вокруг оси и вокруг Солнца, увлекает за собой эфир.

Французский ученый Френель полагал его неподвижным и многие поддерживали такие представления, потому что такой эфир представлял собой идеальную систему отсчета. Относительно его можно было регистрировать абсолютное движение, не зависящее от положения наблюдателя. Абсолютна ли скорость света? Одинакова ли она для любого наблюдателя, независима или, напротив, зависима от движения источника света?

Это были вопросы, на которые ответ дала специальная теория относительности; это была проблема космического масштаба, из которой вытекали выводы исключительной важности.

Опыт Майкельсона: полупрозрачное зеркало сначала расщепляло луч на два взаимно перпендикулярных, которые, в свою очередь, отразившись от расположенных на равных расстояниях зеркал, соединялись вновь. Опыт показал, что “эфирный ветер” не оказывает никакого влияния на свет. Майкельсон пришел к выводу, что гипотеза неподвижного эфира ошибочна. Напрашивался вывод, что эфир, если он существует, не неподвижен относительно Земли.

Эрнст Мах тотчас же потребовал отказаться от идеи эфира. Зато лорд Кельвин продолжал по прежнему верить в эфир. Кельвин и Рэлей обратились к Майкельсону с предложением проверить влияние движения среды на скорость света. Результат был опубликован в 1887 году. Джон Бернал назвал его “величайшим из всех отрицательных результатов в истории науки”.

Хотя опыт, как говорится, поставил крест на неподвижном эфире, все же оставалась возможность, что “Земля увлекает за собой эфир, придавая ему почти ту же скорость, с какой движется сама”.

Через десять лет Майкельсон экспериментально проверил и эту гипотезу. Результат снова был отрицательным. Но чтобы окончательно похоронить эфир, нужна была теория относительности Эйнштейна. Пока же эксперимент Майкельсона-Морли завел физику в тупик.

В период 1893-1895 годов два крупнейших теоретика независимо друг от друга попытались спасти эфир.

Профессор дублинского Тринити колледжа Джордж Фитцджеральд дал блестящее и ошеломляющее объяснение отрицательному результату опыта Майкельсона-Морли. Он предположил, что размеры тел меняются с увеличением скорости их движения, сжимаются в направлении движения. Многим эта теория показалась плодом больного воображения.

Немногие, но очень серьезные физики-теоретики заинтересовались идеей сокращения. Лоренц увидел в ней подтверждение существования эфира. Он построил стройную математическую теорию, из которой, однако, вытекало, что одного сокращения для описания движущихся тел явно недостаточно. Приходилось вводить еще и особое время, зависящее от скорости. Это было уж совсем непостижимо. Этот вывод самому автору казался хитрой уловкой: он не собирался посягать на ньютоновское “абсолютное время”.

Гипотеза Фитцджеральда-Лоренца была, вне всякого сомнения, исключительно смелой. Она блестяще разрешала все противоречия, связанные с опытом Майкельсона-Морли. Но она целиком вытекала из законов классической физики. Она произвела переворот в умах, вызвала бурю в ученом мире, но не смогла взорвать ньютоновской классики.

Лоренц пришел к релятивизму от традиционных основ, которые стали для него барьером. Это был философский барьер, который великий ученый так и не смог преодолеть. Впоследствии он говорил: ”Сегодня, излагая электромагнитную теорию, я утверждаю, что движущийся по криволинейной орбите электрон излучает энергию, а завтра я в той же аудитории говорю, что электрон, вращаясь вокруг ядра, не теряет энергии. Где же истина, если о ней можно делать взаимно исключающие друг друга утверждения? Способны ли мы вообще узнать истину и имеет ли смысл заниматься наукой?”

Противоречия казались ему неразрешимыми. Он глубоко переживал это. Последние годы его были отравлены скепсисом и отчаянием. В беседе с А.Ф.Иоффе он как-то сказал: ”Я потерял уверенность, что моя научная работа вела к объективной истине, и я не знаю, зачем жил; жалею только, что не умер пять лет назад, когда мне еще все представлялось ясным”.

А ураган неясности нарастал. Томсон обнаружил электрон и доказал электрическую природу вещества. Кюри открыли радий, который продемонстрировал необычные свойства. Физики обнаружили, что испускаемые им электроны движутся со скоростью, достигающей многих тысяч километров в секунду. Еще совсем недавно это казалось невероятным. Немецкий физик Кауфман экспериментально доказал, что масса такого быстрого электрона меняется со скоростью. Чем быстрее двигался электрон, тем больше была его масса. Масса перестала быть постоянной величиной.

В опытах физиков рвался мир, созданный Ньютоном. Окончательно разрушил и в то же время спас этот мир Эйнштейн.

Развитие физико-химической биологии

Французский физиолог Франсуа Мажанди (1783-1855) впервые показал огромное значение белка в жизни организмов (кормил собак пищей, в которой отсутствовал белок: сахар, оливковое масло и вода).

Немецкий химик Юстус Либих (1803-1873) детально разработал учение о полноценности пищи и полагал, что углеводы и жиры служат топливом для организма. Возник вопрос: равно ли количественно тепло, полученной организмом от такого “топлива”, теплу, получаемому при сжигании углеводов и жиров вне организма.

Макс Рубнер (1854-1932) экспериментально доказал приложимость закона сохранения энергии к организму животного. К 1894 году он установил, что энергия, выделяемая пищевыми продуктами в организме, точно равна энергии, которую можно получить при сжигании этих продуктов вне организма.

Эти исследования нанесли серьезный удар по витализму. Еще в XVIII веке химики обнаружили, что реакцию иногда можно ускорить введением веществ, которые, по всей видимости, не принимают в ней участия. Это явление в 1835 году Берцелиус назвал катализом.

Казалось вероятным, что химические процессы в живых тканях могут протекать при очень мягких условиях, потому что в тканях присутствуют различные катализаторы, которых не существует в неживой природе.

В 1833 году французский химик Ансельм Пэйян (1795-1871) экстрагировал из проросшего ячменя вещество, которое расщепляло крахмал до сахара. Он назвал это вещество диастазой. Диастаза и другие подобные вещества были названы ферментами. Во второй половине XIX века стало ясно, что ферменты являются катализаторами.

В 1897 году немецкий химик Эдуард Бухнер (1860-1917) доказал, что ферменты могут с успехом действовать и вне клеток. Это было серьезным ударом по витализму, однако это не было его окончательным разгромом. Предстояло еще многое узнать о молекулах белка.

На протяжении прошлого столетия ферменты считались таинственными веществами, которые выявлялись лишь по их действию. В 1926 году американский биохимик Джеймс Самнер (1887-1955) выделил фермент, катализирующий реакцию расщепления мочевины на аммиак и углекислый газ (уреазу) и доказал его белковую природу. В 1930-1935 годах подобные работы были проделаны в отношении пепсина (желудок), трипсина и химотрипсина (поджелудочная железа).

Особенно значительный вклад в изучение белков внесли шведский химик Теодор Сведберг, американский химик Лайнус Полинг, английские биохимики Макс Фердинанд Перутц, Джон Каудери Кэндрю, Фредерик Сэнгер.

К середине XX века секреты молекулы белка были раскрыты. Но вдруг оказалось, что химическая основа жизни вовсе не белок, а другое вещество. В 1944 году американский бактериолог Освальд Теодор Эвери с сотрудниками доказал, что генетической функцией обладают не белки, а нуклеиновые кислоты. С этого момента началось энергичное изучение нуклеиновых кислот. В 1953 году структура молекул нуклеиновых кислот была расшифрована (работа английского биохимика Фрэнсиса Крика и американского биохимика Джеймса Уотсона).

Открытие Крика и Уотсона положило начало бурному развитию молекулярной биологии, или, как ее теперь чаще называют, физико-химической биологии. К главным достижениям этой науки относятся расшифровка генетического кода и открытие механизмов биосинтеза белка, искусственный синтез гена и пересадка генов. В результате родилась генетическая инженерия, успехи которой вызывают как надежды на управление наследственностью, так и опасения, связанные с возможностью создания особо опасного биологического оружия.

Панорама современного естествознания и его незавершенность.

Перед человечеством встали очень серьезные проблемы, порожденные самим прогрессом, решение которых невозможно только в рамках естественно-научной культуры. Решение этих проблем предполагает не только объединение усилий естественников и гуманитариев, но и переход в состояние новой единой культуры.

Тем не менее, естествознание продолжает решать свои сложные проблемы, от которых зависит судьба цивилизации.

Физика, пытаясь познать строение вещества, открывает все новые тайны микромира, ищет новые источники и новые способы получения энергии, изучает природу гравитации и пытается построить единую теорию поля. Она изучает свойства и поведение вещества при сверхнизких и свехвысоких температурах и давлениях.

Химия дарит человеку все новые искусственные материалы, полимеры, препараты.

Биология раскрывает молекулярные механизмы метаболизма, иммунитета, памяти, наследственности, механизмы высшей нервной деятельности, поведения.

Науки о Земле заняты проблемами освоения Мирового океана, изучением тектоники плит и предсказанием землетрясений, глобальными климатическими процессами и проблемой прогнозов погоды, решением проблемы падения плодородия почв и судьбами биосферы.

“Космические” проблемы: влияние космических факторов на человека и жизнь вообще, на климат, защита от комет и астероидов, крупных метеоритов, проблема “пришельцев” и внеземной жизни, внеземных цивилизаций, строение и эволюция Вселенной.

Литература

1. Введение в философию. В двух частях. М., Изд. полит. лит., 1989

2. Ичас М. О природе живого: механизмы и смысл. М., Мир, 1994

3. Лазарев В.В. Шеллинг. М., Мысль, 1976

4. Нарский И.С. Кант. М., Мысль, 1976

5. Овсянников М.Ф. Гегель. М., Мысль, 1971

6. Свасьян К.А. Иоганн Вольфганг Гте. М., Мысль, 1989

7. Фролов И.Т. О человеке и гуманизме. Работы разных лет. М., Изд. полит.лит., 1989, 560 с.

Раздел 1. ФИЗИКА ГЛАЗАМИ ГУМАНИТАРИЯ: ОБРАЗЫ ФИЗИКИ

Пространство, время и материя в контексте культуры

Явления и процессы, происходящие с взаимодействующими объектами, протекают в пространстве и времени. Пространство и время обладают определенными свойствами, влияющими на ход физических явлений.

Вселенная Демокрита - Левкиппа состоит из пустого пространства и бесконечного множества неделимых мельчайших частиц - атомов, отличающихся не качественно (как у Анаксагора), а лишь по своему очертанию, положению и распределению.

Под природой Аристотель понимал совокупность физических тел, состоящих из вещества и находящихся в состоянии непрерывного движения или изменения. Всякое движение протекает во времени и пространстве. Пространство сплошь заполнено материей. Поэтому нет ни пустоты, ни мельчайших неделимых частиц - атомов, которые бесконечно падают в этой пустоте.

Природа Декарта сплошь заполнена материальными частичками. Духовное начало ее не зависит от материального. Основное свойство материи -протяженность. Пустого пространства не существует. Материальный мир находится в вечном движении, совершающемся в полном соответствии с законами механики. Отсюда и все процессы в природе можно свести к простому перемещению частиц в пространстве. Декарт выдвигает идею первоначального толчка, который привел в движение бесконечную непрерывную протяженность.

Согласно Ньютону, и пространство, и время абсолютны. Это означает, что пространство, в котором мы живем, может быть уподоблено существующему вечно, неограниченно большому, неподвижному “ящику” без стенок -вместилищу материи. Свойства этого “ящика” не меняются с течением времени и не зависят от того, как в нем распределено и перемещается вещество. Время во всех точках пространства текло и течет одинаково, т.е., в какие бы области пространства мы ни помещали часы, время они будут отсчитывать с одной и той же скоростью. Распределение вещества в таком неизменном пространстве и его движение определяются действием закона всемирного тяготения. Согласно этому закону, тела притягиваются друг к другу с силой, прямо пропорциональной произведению их масс и обратно пропорциональной квадрату расстояния между ними. Поскольку время во всех областях пространства течет одинаково, а само пространство неизменно, то с помощью закона всемирного тяготения всегда можно рассчитать положение и движения небесных тел и друг относительно друга, и относительно “ящика” - абсолютного пространства.

В математике свойства какого-либо пространства, или, как говорят, его метрика, определяются видом той линии, которая кратчайшим образом соединяет две произвольные точки в нем. Как известно из повседневного опыта, в пространстве, в котором мы живем, кратчайшее расстояние между двумя точками есть прямая линия. Такое пространство называется евклидовым - по имени древнегреческого математика Евклида, который первым рассмотрел его свойства.

Ньютоновские представления о пространстве и времени верны лишь в относительно небольших по астрономическим масштабам областях пространства и для относительно коротких по тем же меркам промежутков времени. Они перестают соответствовать действительности только тогда, когда речь идет об описании Вселенной в целом, а также в сильных полях тяготения.

В 1916 г. А.Эйнштейн создал общую теорию относительности, которую часто называют современной теорией гравитационного поля, а также теорией структуры “пространства-времени”. Как оказалось, эти два понятия органически связаны.

Из общей теории относительности следует, что реальное пространство нашей Вселенной неевклидово. Более того, геометрия нашего пространства меняется с течением времени, а само время течет с разной скоростью в разных областях Вселенной.

Согласно этой теории, геометрические свойства пространства, изменение его геометрии со временем, а также скорость течения самого времени зависят от распределения и движения вещества - материи. В свою очередь, движение материи и распределение ее в пространстве зависят от его геометрии. Оба процесса взаимосвязаны: распределение и движение материи изменяют геометрию пространства-времени, а изменение геометрии пространства-времени определяет характер распределения и движения в нем материи. Эти процессы самосогласованы. А это означает, что и пространство, и время не абсолютны, а относительны - они проявляют себя по разному в зависимости от конкретных условий.

Согласно общей теории относительности, степень искривления пространства, т.е. степень отклонения его от евклидовой геометрии, сильнее там, где материя обладает большей энергией. В этих же условиях время течет медленнее.

Наше пространство является “плоским” в том смысле, что оно удовлетворяет всем аксиомам геометрии Евклида. Движение свободного тела в таком пространстве является равномерным и прямолинейным - движением по инерции. Движение тел по инерции есть проявление однородности пространства и времени.

Однородность пространства означает, что любая его точка физически равноценна, т.е. перенос любого объекта в пространстве никак не влияет на процессы, происходящие с этим объектом. (Один и тот же физический эксперимент, поставленный в Москве или в Нью-Йорке, дает одинаковые результаты).

Однородность времени нужно понимать как физическую неразличимость всех моментов времени для свободных объектов. Другими словами, если объекты не взаимодействуют с окружением, то для них любой момент времени может быть принят за начальный. (В свое время Архимед открыл законы плавания тел. В настоящее время каждый из нас может легко их воспроизвести).

Вблизи таких объектов, как, например, черные дыры, пространство может обладать очень сложными геометрическими формами. Огромные массы вещества, содержащиеся в галактиках и их скоплениях, искривляют пространство. Однако кривизна реального пространства Вселенной мало отличается от нуля. Вот почему кратчайшее расстояние между двумя точками в земных условиях и до ближайших звезд нашей Галактики есть все же прямая линия.

Эйнштейн показал органическую взаимосвязь пространства и времени, относительность пространственных и временных соотношений в материальном мире. Пространство и время определяются распределением и движением масс материи. В связи с этим на смену представлениям о бесконечной неизменной Вселенной приходят другие представления.

Чтобы легче понять, какова модель Вселенной по Эйнштейну, обратимся к двумерному пространству. Представим себе плоское существо, “жука”, живущее на растяжимой поверхности. Бросим на эту поверхность стальной шар, поверхность прогнется, но жук этого не заметит, так как вне этой поверхности для него ничего не существует. Если бросим второй шарик, то он скатится в углубление в первому, а жуку покажется, что второй шарик притянулся к первому.

Эта аналогия позволяет понять теорию Эйнштейна, согласно которой вблизи всякого инертного тела пространство искривляется. В искривленном пространстве наименьшим расстоянием между двумя точками является геодезическая кривая. В таком пространстве свободное движение тела происходит по геодезической кривой.

Если представить, что криволинейное движение тел под действием силы тяготения - это свободное движение в искривленном пространстве, то можно считать, что всякое тело вблизи себя искривляет пространство и это искривление передается подобно волне, от точки к точке. Тогда не надо будет говорить о силах тяготения.

Но движение под действием этих сил не только криволинейное, ускорение может меняться и по модулю. Чтобы объяснить тяготение изменением свойств пространства, надо превратить время в одно из измерений пространства. В теории относительности фигурирует четырехмерное пространство (четвертой координатой является время), искривление которого позволило Эйнштейну полностью объяснить все явления, связанные с тяготением. Это искривление производят тела. В зависимости от плотности вещества геометрия такого пространства может быть приближенно евклидовой, или геометрией Лобачевского, или геометрией Римана.

Представления об искривленном пространстве дали возможность построить модели Вселенной, отличные от модели Ньютона. По одной из моделей мир безграничен, но не бесконечен (пример с поверхностью шара).

В 1922 году А.А.Фридман показал, что теория тяготения Эйнштейна позволяет построить еще две равноправные модели Вселенной: закрытую, подобно поверхности шара, и открытую (расширяющийся цилиндр).

Во времена Аристотеля считалось, что весь материальный мир построен из четырех основных субстанций - земли, воздуха, огня и воды. Это были своего рода “элементарные частицы” природы. В начале 30-х годов нашего столетия современная наука смогла найти более приемлемое описание строения вещества на основе четырех типов элементарных частиц - протонов, нейтронов, электронов и фотонов. Это была простая и привлекательная схема: с помощью всего лишь четырех типов элементарных частиц, следуя законам квантовой механики, удалось объяснить природу химических элементов, их соединений и испускаемых ими излучений. Добавление пятой частицы - нейтрино - позволило объяснить также процессы радиоактивного распада. Казалось, что названные элементарные частицы являются основными кирпичиками мироздания.

Но эта кажущаяся простота вскоре исчезла. Были открыты позитрон и более сотни различных мезонов. Изобилие типов элементарных частиц поставило перед физиками трудный вопрос о том, что лежит в основе строения вещества. И пока еще не удалось найти ключа к решению загадки элементарных частиц.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22


ИНТЕРЕСНОЕ



© 2009 Все права защищены.