бесплатно рефераты
 

Влияние предшественника лей-энкефалина на активность ферментов обмена регуляторных пептидов головного мозга и периферических органов крыс в норме и при эмоционально-болевом стрессе

p align="center">ФЕРМЕНТЫ ОБМЕНА НЕЙРОПЕПТИДОВ ПРИ СТРЕССЕ

В настоящее время протеолиз рассматривается не только как процесс катаболической утилизации биологически активных пептидов, но и как регуляторный фактор, функция которого состоит в запуске и прерывании ряда биохимических и физиологических процессов при различных функциональных состояниях организма [22, 77, 177, 226]. Практически неизученным остается вопрос об изменениях в функции ферментов обмена нейропептидов при стрессе, в то время как именно активность этих ферментов определяет уровень биологически активных пептидов в организме и, следовательно, степень реализации ответной реакции организма на воздействие экстремальных факторов.

Согласно литературным данным характер изменения активности ферментов обмена нейропептидов при стрессе зависит от эмоционального статуса животного, который в свою очередь определяется генетически запрограммированной предрасположенностью к той или иной форме экспериментальных неврозов [22, 48, 80, 83, 138, 210, 236]. Исследования показывают, что у крыс с различным поведением в тесте “открытого поля” наблюдаются различия в уровне катехоламинов в мозге [232]. Поскольку регуляция функций САС при стрессе реализуется при участии опиоидных пептидов, способных влиять на направление адаптивных процессов в организме [139, 146], то не исключается, что устойчивость к стрессу зависит от функциональной активности ферментов обмена опиоидных пептидов.

Подобная зависимость отмечена для КПН, АПФ, КПN при эмоциональном стрессе [43, 44]. Отмечено, что у устойчивых к стрессу животных активность ферментов обмена нейропептидов более чувствительна к воздействию эмоционального стресса, чем у предрасположенных.

Обнаружено, что у устойчивых к стрессу животных в гипоталамусе и стриатуме активность КПН при воздействии стресса повышается [41, 42, 43, 56]. Авторами высказано предположение, что такой эффект наблюдается в связи с активацией синтеза в исследованных отделах нейропептидов (энкефалинов, вещества Р и др.), играющих ключевую роль при адаптации к стрессу. В гипофизе, где синтезируется АКТГ, активность растворимой фракции КПН, напротив, существенно повышалась у предрасположенных к стрессу животных. Предполагается, что причина отмеченных изменений состоит в том, что КПН участвует в процессинге АКТГ, который в свою очередь усиливает чувство страха и тревоги и тем самым усугубляет эмоциональный стресс [189].

Известно, что КПN и АПФ также участвуют в обмене ПВДС, -эндорфина [40, 209], уровень которых различен у предрасположенных и устойчивых к стрессу животных [92, 130,131]. Повышение содержание этих пептидов в мозге и крови у животных связывают, прежде всего, с высокой скоростью их обмена. Показано, что у устойчивых к эмоциональному стрессу животных, активность КПN и АПФ в сыворотке крови выше, чем у предрасположенных [44]. В связи с этим, авторами высказано предположение о более интенсивном обмене нейропептидов у этих животных и косвенном влиянии КПN и АПФ на эмоциональный статус организма [44].

Немаловажную роль в изменении функциональной активности ферментативных систем мозга и периферических тканей при стрессе играет вид стресс-воздействия (хронический и острый звуковой, иммобилизационный, эмоционально-болевой и т.д.).

Такая зависимость показана, в частности, для КПН [37, 41, 42, 43, 45, 64]. Активность данного фермента при воздействии стресса различной природы, в основном, повышалась, однако, степень ее повышения была различной, что обуславливают спецификой воздействия, вызывающего стресс. Так при хроническом эмоционально-болевом стрессе (ЭБС) повышение активности фермента было меньшим, чем при остром воздействии стресс-факторов [37, 42]. Кроме того, показано, что повышение активности фермента было различным для растворимой и мембраносвязанной форм КПН, что свидетельствует о различной роли этих форм фермента в организме [45, 186]. Наиболее выраженными изменения активности фермента были в гипофизе - отделе, отвечающем за синтез и секрецию стресс-пептидов [37, 45]. Значительное повышение активности показано также в стриатуме - отделе, где синтезируется ряд биологически активных пептидов стресс-протективного действия. Причем отмечено, что при однократном ЭБС такое повышение активности сохранялось в течение достаточно длительного промежутка времени, что указывает, на длительный характер биосинтеза нейропептидов при оказанном воздействии. Предполагается, что причина различия в динамике изменения активности КПН при остром и хроническом воздействии стресса состоит в развитии адаптации организма к неблагоприятным факторам среды при хроническом (многократном) стресс-воздействии [37].

Особый интерес представляют исследования, касающиеся влияния различных веществ на ферменты обмена нейропептидов при стрессе. Известно, что этанол ослабляет некоторые физиологические проявления стресса, усиливает секрецию стресс-пептидов, а так же активирует энкефалинэргическую систему [19, 41]. Поскольку уровень опиоидных и стресс-пептидов в организме контролируется КПН, то представляется возможным, что КПН определяет характер влияния этанола на организм при стрессе [19, 41]. Характер влияния этанола на физиологические проявления стресса связан с особенностями стрессирующего фактора [61]. Сведения о гиперактивации КПН при совместном действии этанола иммобилизационного или хронического ЭБС в отделах мозга, где синтезируются опиоидные пептиды, вещество Р, подтверждают данные об адаптогенном действии этанола при стрессе. Однако такая активация пептидэргических систем ведет к тяжелым последствиям для организма, так как вызывает более быстрое истощение этих систем [41].

Дальнейшее изучение механизмов, предотвращающих возникновении стресс-реакции, способствовало поиску новых веществ, обладающих стресс - протективным действием. Особое место в ряду таких веществ отводится транквилизаторам (резерпин, диазепам), которые широко используются в клинической практике. Однако влияние их на пептидэргические системы и ферменты обмена нейропептидов изучено недостаточно. Между тем этот вопрос достаточно важен, для понимания механизмов развития стресса.

Известно, что резерпин повышает уровень энкефалинов в организме [58]. При введении резерпина, активность ферментов процессинга, обладавших КПБ-подобной активностью (КПН и КПN), повышалась в 2-3 раза [58]. Предполагается, что изменение активности изучаемых ферментов является причиной активизации энкефалинэргической системы.

Транквилизаторы бензодиазепиновой природы также обладают стресс - протективным действием. Изучение их воздействия на ферменты обмена нейропептидов при стрессе становится тем более интересным, что в цепи реакций, которые они осуществляют в организме есть вещества, которые являются либо продуктами их деятельности, либо они участвуют в регуляции их синтеза. Так бензодиазепиновые транквилизаторы модулируют уровень АКТГ как в норме так и при воздействии стресс-факторов [114, 252], в частности введение фенозепама уменьшает концентрацию АКТГ при стрессе. Поскольку известно, что КПН участвует в биосинтезе АКТГ, то особый интерес представляет изучение возможности вовлечения этого фермента в стресс-протективное действие транквилизаторов.

Данные исследований показывают, что активность КПН при совместном воздействии диазепама и стресса, в основном, ниже, чем только при стрессе [39]. Активность АПФ в сыворотке при введении диазепама изменяется сходным образом. Поскольку АПФ участвует в деградации энкефалинов, вещества Р и ПВДС - биологически активных пептидов, основная роль которых заключается в адаптации организма к стрессу [107, 135, 152], то не исключается, что антистрессорное действие диазепама обусловлено его модулирующим действием на активность КПН и АПФ. Изменение активности данных ферментов может привести к уменьшению содержания АКТГ и увеличению содержания опиоидных нейропептидов, способствуя тем самым развитию адаптационных реакций в организме.

Таким образом, изменения в проявлении функциональной активности ферментов процессинга и инактивации биологически активных пептидов при стрессе свидетельствуют о важной роли этих ферментов в регуляции уровня активных нейропептидов, участвующих, как в развитии, так и в торможении размаха стресс-реакции.

Суммируя вышеизложенные сведения необходимо отметить следующее:

Опиоидные пептиды, их синтетические аналоги (например, даларгин), а также предшественники (лей5-энкефалин-арг6) обладают стресс-протективным свойством.

При воздействии на организм стресс-факторов различной природы наблюдаются значительные изменения в обмене биологически активных пептидов, а также жизнедеятельности организма в целом. Наиболее существенные изменения отмечаются при остром стресс-воздействии.

Важная роль в обмене регуляторных пептидов принадлежит ферментам пептид-гидролазам, которые регулируют уровень биологически активных пептидов при различных функциональных состояниях организма, в том числе и при стрессе. Особое место в ряду этих ферментов занимают основные карбоксипептидазы, которые действуют на конечном этапе процессинга предшественников регуляторных пептидов, а также ферменты, участвующие в инактивации активных форм нейропептидов.

Стресс-протективные вещества различной природы влияют на активность ферментов обмена нейропептидов мозга и периферических тканей стрессированных животных, что свидетельствует об изменениях в метаболизме нейропептидов у этих животных.

В связи с этим, представляет интерес изучение влияния предшественника лей-энкефалина на активность некоторых ферментов обмена нейропептидов головного мозга и периферических тканей животных, подверженных воздействию острого ЭБС. Полученные данные могут способствовать выяснению роли пептидгидролаз в механизмах развития стресс-реакции, а также в реализации эффектов экзогенного предшественника на организм, подверженный стрессу.

ГЛАВА 2. МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЯ.

2.1. МАТЕРИАЛЫ ИССЛЕДОВАНИЯ.

Объектом исследования служили головной мозг и периферические ткани (надпочечники и семенники) самцов белых беспородных крыс в возрасте 5 месяцев, массой 160-190 г. Животных содержали в стандартных условиях вивариума.

Животных декапитировали, извлекали головной мозг, гипофиз, надпочечники и семенники. Затем ткани помещали в охлажденный физиологический раствор, очищали от оболочек и кровеносных сосудов, высушивали фильтровальной бумагой. Затем выделяли отделы мозга - гипоталамус, средний мозг, гиппокамп, стриатум, большие полушария.

Образцы выделенных отделов мозга и тканей гомогенизировали в стеклянном гомогенизаторе Поттера в 20 мМ натрий ацетатном (NaAc) буфере рН 5,6, содержащем 50 мМ NaCl. Соотношения вес/объем были различны: 1/400- для гипофиза, 1/200- для надпочечников, 1/100- для семенников, 1/50- для отделов мозга. Гомогенаты использовали в качестве источников КПН, ФМСФ-ингибируемой КП и АПФ.

В работе были использованы 4 группы животных. 1 группа - интактные животные. Животным 2 группы вводили раствор лей5-энкефалин-арг6 в дозе 20 мкг/кг соответственно. Животные 3 группы подвергались воздействию острого ЭБС. Животным 4 группы перед воздействием острого ЭБС инстиллировали на конъюнктиву глаза 2 мкл раствора предшественника лей-энкефалина - лей5-энкефалин-арг6 в дозе 20 мкг/кг.

2.2. МЕТОДЫ ИССЛЕДОВАНИЯ.

2.2.1. Схема введения предшественника лей-энкефалина

Введение предшественника лей-энкефалина - тир-гли-гли-фен-лей-арг (лей-энкефалин-арг) осуществлялось способом инстилляции на конъюнктиву глаза (доза 20 мкг/кг веса). Раствор лей-энкефалин-арг наносился на правый глаз крысы, с помощью дозатора с мягким катетером из поливинилхлорида (объем наносимого раствора 2 мкл). Введение предшественника энкефалина осуществлялось утром в одно и то же время.

Раствор лей-энкефалин-арг был приготовлен на физиологическом растворе.

Декапитацию животных производили через 0,5 часа, 4 часа, 24 часа, 72 часа и 10 суток после введения лей-энкефалин-арг, физиологического раствора и через 0,5 часа, 4 часа, 24 часа, 72 часа и 10 суток с начала воздействия острого ЭБС.

2.2.2. Моделирование острого эмоционально-болевого стресса

Для моделирования острого эмоционально-болевого стресса (ЭБС) крыс помещали в клетку с полом из металлической проволоки и встроенной в нее электрической лампочкой и звонком.

Для создания модели стресса крыс в течение 20 мин через каждые 10 секунд в беспорядочном режиме подвергали воздействию одного из трех факторов: вспышке света (лампа накаливания мощностью 100 Вт, расстояние 0,5 м), звука силой 70 Дб, электрокожному раздражению пороговой силы (2 мА). Длительность каждого воздействия составляла 1 сек.

2.2.3. Метод определения активности КПН.

Активность КПН определяли флюориметрически, используя метод Fricker и Snayder c некоторыми модификациями [193]. Активность фермента определяли по освобождению дансил-фен-ала из дансил-фен-ала-арг при рН 5,6, как активность ингибируемая ГЭМЯК - высокоспецифичным ингибитором КПН [193].

Для определения активности КПН смешивали 150 мкл 50 мМ NaAc буфера рН 5,6, содержащего 50 мМ NaCl (проба без ГЭМЯК - контрольная) или 150 мкл раствора, содержащего ГЭМЯК, в том же буфере - опытная проба (концентрация в пробе 1 мкМ) с 50 мкл препарата фермента. Затем пробы преинкубировали 8 мин, при 37 0С, по истечении этого времени прибавляли предварительно нагретый до 37 0С раствор дансил-фен-ала-арг (концентрация 210 мкМ), объемом 50 мкл (конечная концентрация субстрата в пробе 42 мкМ). Реакционную смесь инкубировали 60 мин при t = 37 0С, реакцию останавливали прибавлением 50 мкл 1 н. НСl.

К пробам приливали хлороформ объемом 1,5 мл. и тщательно встряхивали в течение 60 сек. При этом продукты реакции переходят в хлороформную фазу, а субстрат, нерастворимый в хлороформе, остается в водной фазе. Для разделения хлороформной и водной фаз пробы центрифугировали в течение 5 мин при 1000 об/ мин.

Флюоресценцию хлороформной фазы измеряли на флюориметре ФМЦ - 2 в кювете толщиной 1 см при ex = 360 нм и em= 530 нм. В качестве стандартного раствора использовали 1 мкМ раствор дансил-фен-ала в хлороформе.

Активность КПН определяли как разность в накоплении продуктов реакции в пробах, содержащих и не содержащих ГЭМЯК. Активность выражали в нмоль дансил-фен-ала, образовавшегося за 1 мин инкубации в пересчете на 1 мг белка.

2.2.4. Метод определения активности

ФМСФ - ингибируемой карбоксипептидазы.

Активность ФМСФ-ингибируемой карбоксипептидазы определялась флюориметрически, методом, разработанным в лаборатории нейрохимии ПГПУ им. В.Г. Белинского [49]. В качестве субстрата использовали раствор дансил-фен-лей-арг.

В контрольные пробы вносили 150 мкл 50 мМ NaAc буфера, содержащего 50 мМ NaCl рН 5,6 и 50 мкл препарата фермента. Опытные пробы содержали 140 мкл указанного буфера и 50 мкл препарата фермента, ингибитор фенилметилсульфонилфторид (ФМСФ), приготовленный на этаноле, вносился в пробу непосредственно перед преинкубацией в объеме 10 мкл. Пробы преинкубировали 8 мин при 370С, затем вносили 50 мкл 210 мкМ раствора дансил-фен-лей-арг. Далее контрольные и опытные пробы обрабатывали, как описано для КПН.

Активность ФМСФ - ингибируемой карбоксипептидазы определяли как разность в накоплении продуктов реакции в пробах, содержащих и не содержащих ФМСФ и выражали в нмоль дансил-фен-лей, образовавше-гося за 1 мин инкубации в пересчете на 1 мг белка.

2.2.5.Метод определения активности АПФ.

Активность АПФ также определялась флюориметрически. В качестве субстрата использовали дансил-фен-ала-арг, приготовленный на воде. В качестве ингибитора использовали высокоспецифичный ингибитор АПФ - каптоприл.

Контрольные пробы содержали 100 мкл 200 мМ трис НСl рН 7,6 и 100 мкл препарата фермента. В опытные пробы вносили 90 мкл указанного буфера, 10 мкл 25 мМ каптоприла, приготовленного на воде и 100 мкл гомогената. Пробы преинкубировали в течение 8 мин при 370С, затем в каждую пробу прибавляли предварительно нагретый до 370С раствор субстрата дансил-фен-ала-арг объемом 50 мкл. Реакционные смеси инкубировали в течение 30 мин при 37 0С, реакцию останавливали прибавлением 50 мкл 1н раствора НСl. Далее пробы обрабатывали по схеме, приведенной для КПН.

Активность фермента определяли как разницу в приросте флюорисценции в пробах содержащих и не содержащих ингибитор АПФ - каптоприл и выражали в нмоль дансил-фен-ала, образовавшегося за 1 мин инкубации в пересчете на 1 мг белка.

2.2.6. Методы определения активности КПН, ФМСФ-ингибируемой КП и АПФ in vitro

В опытах in vitro, влияние лей-энкефалин-арг на активность ферментов изучали в гомогенатах гипофиза, надпочечников и больших полушарий. Раствор лей-энкефалин-арг добавляли непосредственно в среду инкубации, концентрация исследуемого предшественника составляла 2,4 мМ. Все последующие операции по определению активности ферментов проводили по схеме, описанной выше.

2.2.7. Метод определения содержания белка

Содержание белка в пробах определяли по методу Лоури [65]. Метод основан на способности белка окрашиваться раствором Фолина. В качестве стандарта для построения калибровочной кривой использовали БСА.

2.2.8.Статистическая обработка результатов исследования.

Результаты подвергали статистической обработке с использованием t-критерия Стьюдента, различия считали достоверными при p<0,05 [98].

ГЛАВА 3. РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ.

3.1. РЕГИОНАЛЬНОЕ И ТКАНЕВОЕ РАСПРЕДЕЛЕНИЕ АКТИВНОСТИ КПН, ФМСФ-ИНГИБИРУЕМОЙ КП И АПФ У САМЦОВ КРЫС.

Известно, что уровень биологически активных пептидов регулируется пептидгидролазами, которые отщепляют остатки аргинина и лизина с С-конца пропептидов. Неоднородное распределение нейропептидов, а также разница в течение процессинга регуляторных пептидов в тканях (нервной и периферической) [14, 212, 271] указывают на необходимость изучения тканевого и регионального распределения активности ферментов их обмена. Особый интерес вызывает изучение распределения активности ФМСФ-ингибируемой КП - фермента, биологическая роль которого в полной мере не определена. Важным представляется, также, сравнение уровня активности этого фермента с активностью КПН и АПФ - ферментов, тканевое и региональное распределение и биологическая роль которых известны.

Результаты исследования распределения активности КПН, ФМСФ-ингибируемой КП и АПФ в отделах мозга и некоторых периферических тканях представлены в таблице 1 (приложение).

3.1.1.Распределение активности КПН.

Максимальная активность КПН обнаружена в гипофизе - отделе, синтезирующем группу биологически активных пептидов. В отделах мозга активность КПН примерно в 6-7 раз ниже, чем в гипофизе. По убыванию активности КПН отделы мозга можно расположить следующим образом: средний мозг, гипоталамус, гиппокамп. В этих регионах мозга секреторные пептиды не синтезируются, однако данные отделы характеризуются достаточно высоким их содержанием [221]. Далее по убыванию активности КПН следуют стриатум и большие полушария, уровень активности фермента, в которых примерно одинаков. В семенниках и надпочечниках активность КПН на порядок ниже, чем в отделах мозга.

Таким образом, высокая активность КПН обнаружена в отделах мозга, связанных с образованием, секрецией или высоким содержанием регуляторных пептидов [221]. Полученные данные хорошо согласуются с литературными о распределении активности КПН [39, 40, 193, 194].

Следует указать на то, что в наших исследованиях активность КПН определялась как активность, ингибируемая ГЭМЯК, являющейся высокоспецифичным ингибитором КПН, в то время как другие авторы использовали данные по активности КПН, стимулируемой ионами Со2+ [188, 193, 194], что предполагает несколько завышенные результаты, не всегда соответствующие действительному уровню активности этого фермента в мозге и тканях. В связи с этим значения активности КПН в наших исследованиях несколько ниже значений, имеющихся в литературе.

3.1.2. Распределение активности АПФ.

Максимальная активность АПФ у интактных животных обнаружена в гипофизе. В стриатуме активность АПФ примерно в 3 раза ниже. В других отделах мозга и надпочечниках активность фермента находится на уровне предела чувствительности метода. Высокая активность АПФ обнаружена также в семенниках.

Таким образом, полученные данные хорошо согласуются с распределением регуляторных пептидов в мозге и периферических тканях крыс, что подтверждает участие данного фермента в процессах модификации белков и пептидов в этих регионах.

3.1.3.Распределение активности ФМСФ-ингибируемой КП

Полученные данные свидетельствуют, что активность ФМСФ-ингибируемой КП обнаружена во всех исследуемых регионах мозга и периферических тканях крыс (табл.1). Наибольшая активность фермента показана в надпочечниках, в гипофизе активность составляет 74% от активности ФМСФ-ингибируемой КП в надпочечниках, в других отделах активность примерно одинакова и составляет 23% от активности фермента в гипофизе.

Страницы: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11


ИНТЕРЕСНОЕ



© 2009 Все права защищены.