| |||||
МЕНЮ
| МолибденМолибденИсторическая справка. Название элемента №42 происходит от латинского слова molybdaena, которым в средние века обозначали все минералы способные оставлять след на бумаге: и графит, и галенит Pbs, и даже сам свинец. И ещё минерал, который сейчас называют молибденитом, или молибденовым блеском. Впоследствии оказалось, что этот минерал тогда ещё неизвестного элемента №42. Но до середины 18-го века молибденит и графит не различали, лишь в 1758 г. известный шведский химик и минералог Аксель Фредерик Кронстедт предположил, что это самостоятельных вещества, но прошло ещё 20 лет, прежде чем это сумели доказать на опыте. Минерал, которым писали, попал в лабораторию другого большого химика, Карла Вильгельма Шееле. Первое, что он сделал, это исследовал, как на этот минерал действуют крепкие кислоты. В концентрированной азотной кислоте минерал растворился, но при этом в колбе выпал белый осадок. Высушив его и исследовав, Шееле установил, что особая белая земля обладает свойствами кислотного окисла. В то время химики ещё не имели чёткого представления о том, что ангидрид(«кислота-вода») – это соединение элемента с кислородом. Однако собственный опыт подсказывал учёному: чтобы выделить элемент из «земли», нужно прокалить её с чистым углем. Но для этого у Шееле не было подходящей печи. И он попросил проделать этот опыт другого химика, Гьельма, у которого такая печь была. Гьельм согласился. Лишённый чувств зависти, беззаветно преданный науке, Шееле с волнением ждал результата. И когда опыты завершились получением неизвестного металла, Шееле написал Гьельму: «Радуюсь, что мы теперь обладаем металлом – молибденом». Это было в 1790 г. Новый металл получил имя – чужое имя, потому что латинское molibdaena происходит от древнегреческого названия свинца – ????????. В этом есть парадокс – трудно найти металлы более несхожие чем молибден и свинец. Но металл полученный Шееле и Гьельмом, не был чистым: при прокаливании с углем трёхокиси молибдена МоО3 невозможно получить чистый Мо, т.к. он реагирует с углем, образуя карбид. Уже после смерти обоих первооткрывателей их знаменитый соотечественник Берцелиус восстановил молибденовый ангидрид не углем, а водородом, получил чистый молибден, установил его атомный вес и подробно исследовал его свойства. Распространение в природе и месторождения молибдена. Молибден принадлежит к малораспространённым элементам. Среднее содержание его в земной коре составляет 3*10-4%(по массе). Концентрация молибдена в рудах незначительна. Эксплуатируются руды, содержащие десятые и даже сотые доли процента молибдена. Различают несколько видов молибденовых руд: 1. простые кварцево-молибденовые руды, в которых молибденит залегает в кварцевых жилах. 2. Кварцево-молибдено-вольфрамитовые руды, содержащие наряду с молибденитом вольфрамит. 3. Скарновые руды. В рудах этого типа молибденит часто с шеелитом и некоторыми сульфидами(перит, халькоперит) залегают в кварцевых жилах, заполняющих трещины в скарнах(окременённых известняках). 4. Медно-молибденовые руды, в которых молибденит сочетается с сульфидами меди и железа. Это наиболее важный источник получения молибдена. Наиболее значительные месторождения молибденовых руд в зарубежных странах сосредоточены в западной части США, Мексике, Чили, юго-восточной части Канады, южной Норвегии и восточных штатах Австралии. В России эксплуатируется ряд месторождений молибденовых руд, обеспечивающих потребность отечественной промышленности в молибдене( на Северном Кавказе и Закавказье, Красноярском крае и др. районах). Производство молибдена. Все способы получения вольфрама применимы и для получения молибдена. Трёхокись молибдена может быть восстановлена до металла водородом, углеродом и углесодержащими газами, а также металлотермическим методом алюминием и кремнием. Промышленный способ производства чистого порошкообразного молибдена, превращаемого затем в компактный металл, состоит в восстановлении трехокиси молибдена водородом. Чистую трехокись молибдена, необходимую для производства металла, получают прокаливанием при 450 – 500?С парамолибдата аммония в муфельных печах с вращающейся трубой. При восстановлении трёхокиси молибдена водородом отчётливо выявляются две стадии восстановления: МоО3 + Н2 МоО2 + Н2О; МоО2 + 2Н2 Мо + 2Н2О; Промежуточные окислы( Мо4О 11 и др.), вероятно, образуются в результате вторичного взаимодействия между МоО3 и МоО2 . Реакция первой стадии восстановления экзотермическая: ?Н?298 = -20,3ккал; ?G?= -21,289ккал. Реакция второй стадии восстановления экзотермическая: ?Н?298 =+25,2ккал. В соответствии с высокими значениями Кр первую стадию восстановления проводят при низких температурах 459 - 550?С. вторую стадию вследствие малых значений Кр при высоких температурах(900 - 1100?С) остроосушённым водородом. Восстановление трёхокиси молибдена в производственных условиях ведут в две или три стадии. Первую стадию( МоО3 МоО2) осуществляют при подъёме температуры вдоль трубы печи, по которой передвигаются лодочки, от 450 - 650?С, причём образование двуокиси молибдена должно в основном закончиться до достижения 550?С, так как промежуточный окисел даёт легкоплавкую эвтектику с МоО3 , плавящуюся при 550 - 600?С. скорость продвижки лодочек примерно 20 мм/мин. Расход водорода на одну трубу диаметром 51 мм 0,5 – 0,7мі/час. На второй стадии восстановления(МоО2 Мо) температуру вдоль печи изменяют от 650 - 950?С, причем используется хорошо осушенный водород росы(-40)ч(-50?С). после второго восстановления порошки молибдена ещё содержат 0,5 – 1,5% кислорода в зависимости от скорости продвижения лодочек. Скорость движения лодочек на второй стадии в 2 – 2,5 раза ниже, чем на первой, а расход водорода в 1,5 – 2 раза выше. Для снижения содержания кислорода обычно применяют дополнительное третье восстановление при 1000 - 1100?С. Вместимость лодочек на второй стадии восстановления примерно в 2 раза выше, а на третьей – в 5 раз выше, чем на первой, что объясняется различием в насыпной массе МоО3 (0,4 - 0,5г/смі), МоО2 (1 – 1,5 г/смі) и Мо(~2,5г/смі). Первую и вторую стадию восстановления ведут в печах с 9 – 11 трубами из хромоникелевой стали. При 1000 - 1100?С стойкость труб из хромоникелевой стали и нихромовых электронагревателей при соприкосновении с воздухом заметно снижается. Поэтому третье восстановление проводят в трубчатых печах с герметичным кожухом, заполненных водородом для защиты труб и нагревателей от окисления. После третьего восстановления порошки молибдена содержат примерно 0,25 – 0,3% кислорода. Средний размер частиц порошков молибдена 0,5-2мкм. Они мельче, чем частицы порошка вольфрама, что объясняется низкой температурой первой стадии восстановления, при которой окислы заметно не испаряются. В последнее время для первой стадии восстановления начали применять барабанные печи непрерывного действия. Свойства молибдена По физическим, механическим и химическим свойствам молибден (Мо) близок вольфраму (W), хотя несколько отличается от него. Физические свойства Мо приведены ниже. |Атомный номер |42 | |атомная масса |95,95 | |плотность, г/см3 |10,2 | |тип и период решётки |ОЦК | | | | |температура плавления, С |2620 | |температура кипения, С |4800 | |температура перехода в сверхпроводящее |0,9-0,98 | |состояние, К | | |теплота плавления, кал/г |50 | |теплота сублимации, кал/г |1620 | |удельная теплоёмкость(при 20-100град), |0,065 | |кал/(г*С ) | | |теплопроводность(при 20град С), |0,35 | |кал/(см*с*С) | | |коэффициент расширения(25-700град С) |5,8-6,2*10 | | | | |работа выхода электронов, эВ |4,37 | |сечение захвата тепловых нейтронов, барн|2,6 | | | | |модуль упругости для проволоки, кгс/мм2 |28500-30000| Молибден относится к тугоплавким металлам. Полее высокие точки плавления имеют только вольфрам, рений и тантал. Среди других физических свойств молибдена необходимо отметить высокую температуру кипения и электропроводность (меньше чем у меди, нобольше, чем у железа и никеля) и сравнительно малый коэффициент линейного расширениия( примерно 30% от коэфф расширения меди). Твёрдость и предел прочности ниже, чем у вольфрама. Он легче потдаётся обработке давлением. Механические свойства сильно зависят от чистоты металла и предшествующей механической и термической его обработки. Важное свойство молибдена – малое сечение захвата тепловых нейтронов, что делает возможным его применение в качестве кострукционного материала в ядерных реакторах. На воздухе при обычной температуре Мо стоек. Легкое окисление наблюдается при 400?С. выше 600?С металл быстро окисляется с образованием МоО3 . пары воды выше 700?С интенсивно окисляют Мо до двуокиси молибдена МоО2. С водородом молибден химически не взаимодействует вплоть до плавления. Однако при нагревании металла во водороде происходит некоторое поглощение газа с образованием твёрдого растврора. При обычной температуре молибден стоек в соляной и серных кислотах , но несколько растворяется при 80 - 100?. Азотная кислота и царская водка медленно растворяют молибден на холоде и быстро при нагревании. Металл растворяется в перекиси водорода с образованием пероксо кислот Н2МоО6 и Н2МоО11. В плавиковой кислоте молибден устойчив, но в смеси ее с азотной кислотой быстро растворяется. Хорошим растворителем молибдена служит смесь пяти объёмов азотной кислоты, трёх объёмов серной кислоты, и двух объёмов воды. Эта смесь используется для растворения молибденовых кернов после навивки вольфрамовых спиралей. В холодных растворах щелочей молибден стоек, но несколько разъедается горячими растворами. Металл интенсивно окисляется расплавленными щелочами, особенно в присутствии окислителей, образуя соли молибденовой кислоты. Министерство Высшего Профессионального Образования Российской Федерации УГАТУ Кафедра Химии Контролируемая самостоятельная работа студента Выполнил: Мистер Икс ЛП-1** Проверил: Беляева Л.С. Уфа – 200* |
ИНТЕРЕСНОЕ | |||
|