бесплатно рефераты
 

Аналитические весы

После продолжительной и утомительной работы нам удалось по-

добрать многозвенную 21-разрядную цепочку сопротивлений, значения

сопротивлений которых сведены в табл. 1.

Таблица 1

Подобранные номиналы резисторов многозвенной цепочки

цифроаналогового преобразователя

Разряд Номиналы резисторов Коэффициент Средние зна-

NN цепи, Ом делимости чения, Ом

20 2,246 1,123 2,000

19 2,248 1,124 2,000

18 2,252 1,126 2,000

17 2,258 1,129 2,000

16 2,260 1,130 2,000

15 2,260 1,130 2,000

14 2,247 1,124 1,999

13 2,249 1,125 1,999

12 2,250 1,126 1,999

11 2,253 1,127 1,999 2,2575

10 2,253 1,127 1,999 --------

9 2,257 1,128 2,001 1,1283

8 2,256 1,127 2,002

7 2,258 1,128 2,002

6 2,260 1,129 2,002

5 2,264 1,131 2,002

4 2,266 1,132 2,002

3 2,266 1,132 2,002

2 2,268 1,132 2,004

1 2,268 1,132 2,004

0 2,269 1,132 2,004

Анализ значений сопротивлений табл. 1 показывает, что для

старших разрядов цифроаналогового преобразователя коэффициенты де-

ления напряжений подобраны практически идеально, с ухудшением до

0,2% в трех младших разрядах (0.04% - в среднем), а группы сопро-

тивлений подобраны с точностью 0.5%, такие параметры существенно

лучше тех, 0.1 и 1.0%, соответственно [8], которые обеспечивают

измерения с погрешнрстью, сопоставимой с половиной величины млад-

шего разряда преобразователя.

Теперь нас подстерегает единственная проблема, сопряженная

с большими величинами токов, которые будут протекать через пере-

ключатели K0, K1, ... ,Kn-1, полностью исключающая возможность

применения для этой цели полупроводниковых переключателей, напри-

мер, AM2009, MM4504, MM5504 [8], DG516 [12] и им подобных. Кроме

того, каждый такой ключ будет иметь собственную величину сопро-

тивления, вклад которого в каждый из разрядов аналогоцифрового

преобразователя будет сильно искажать выходное напряжение.

Единственным решением этой проблемы может стать исполь-

зование в качестве ключа перекидного контакта реле. Неоспоримым

достоинством использования реле является то, что его контакт не

вносит паразитного сопротивления в цепи разрядов аналогоцифро-

вого преобразователя и для реле неопасно протекание больших токов

через перекидной контакт. Кроме того, применение реле позволит

произвести гальваническое разделение силовой цепи в 12 В от це-

пи питания ОЭВМ в 5 В. Существенный недостаток использования реле

в качестве разрядных ключей является их низкое быстродействие -

от 10 до 50 милисекунд, однако оно может быть компенсировано ис-

пользованием алгоритма скорейшего поиска необходимого значения

цифрового кода.

Из скудного ряда доступных нам достаточно миниатюрных реле,

мы сразу отказались от реле с герконовым переключателем (РЭС-55),

так как они оказались бы в зоне воздействия сильного магнитного

поля устройства взвешивания, когда факт включения ее контакта

мог быть не бесспорным, и из-за слишком большого времени надеж-

ного срабатывания - 25...40 милисекунд. Из реле с механическим

контактором больше всего подходило РЭС-10, во-первых, из-за ма-

лых размеров, во-вторых, из-за возможности включения контакта

при напряжениях в 4 Вольта, в-третьих, из-за ориентированности

ее конструкции на крепление непосредствено к монтажной печатной

плате, в-четвертых, из-за самой высокой скорости срабатывания

из всех идентичных ей образцов - не более 10 милисекунд, в-пятых,

из-за относительно низкого потребления тока - около 35 милиам-

пер.

Разработанная на основе всего вышеизложенного принципиаль-

ная электрическая схема цифроаналогового преобразователя пред-

ставлена на рис. 5. В этой схеме с выхода программируемого па-

раллельного адаптера КР580ВВ55А нулевой потенциал подается в ба-

зу транзистора VT0 (VT1,...,VT19,VT20) - КТ361Е, вызывая отпира-

ние его перехода эмитер-колектор и протекание постоянного тока,

напряжением в 5 Вольт, через обмотку реле K0 (K1,...,K19,K20) -

РЭС-10. Непосредственное включение обмоток реле с выводов микро-

схемы КР580ВВ55А невозможно из-за их низкой нагрузочной способ-

ности (3,2 мА), при величинах токов, потребляемых реле РЭС-10,

порядка 35 мА.

Поскольку коммутирование контактов реле не происходит

мгновенно и характеризуется явлением, называемым в литературе

"дребезгом", для предотвращения подгорания контактов реле, до

момента уверенного их срабатывания, цепь 12 Вольтового питания

разорвана на переходе эмитер-колектор мощного транзистора VT22

(КТ972). После выдерживания паузы в 11 мС, необходимых для уве-

ренного срабатывания контактов реле РЭС-10, на выход P3.5 ОЭВМ

подается сигнал нулевого потенциала, поступающий на базу транзис-

тора VT21 (КТ361Е) и отпирающий его переход между колектором и

эмитером. После этого в базу транзистора VT22 поступает потен-

циал, достаточный для отпирания его перехода эмитер-колектор.

Представленная на рис. 5 принципиальная электрическая

схема коммутатора исполнительной цепи позволяет не только из-

бавиться от проблемы подгорания контактов реле, но и избежать

перегрева низкоомных сопротивлений многозвенной цепочки резис-

торов большими токами, посредством сбора цепи на очень малень-

кий интервал времени 300 микросекунд.

Для подавления колебаний тока при выключении обмотки реле,

обладающей индуктивностью, параллельно ей включен шунтирующий

диод VD0 (VD1,...,VD19,VD20).

Суммированное с выходов всех активных разрядов напряжение

будет проходит через катушку устройства взвешивания.

УСТРОЙСТВО ВЗВЕШИВАНИЯ

Вначале для устройства взвешивания мы изготовили 100 витко-

вую катушку диаметром 20 мм из медной проволки толшиной 0,07 мм,

а магнитное поле создавали при помощи плоского постоянного магнита

размером 100х60х17, которые на фабричном комплексе АО ССГПО исполь-

зуются на магнитных сепараторах для извлечения железа из руды.

При пропускании тока от пальчиковой батарейки напряжением

1,5 В мы наблюдали поразительный эффект: катушка подлетала в вверх

даже при токах в несколько мА, переворачивалась в воздухе и "прили-

пала" к магниту. Этот, воодушевлявший наши усилия, эффект неожидан-

но наткнулся на два препятствия:

1) магнит притягивал к себе все металлические предметы в ди-

аметре 100...300 мм, то есть создавал очень сильное магнитное поле;

2) при смещении катушки на небольшое расстояние, незначитель-

но изменялась величина тока, необходимая для ее подьема, то есть

встала проблема фиксации катушки над магнитом.

Чтобы решить одновременно обе проблемы мы использовали в ка-

честве устройства взвешивания аккустический динамик 4ГД-35, предва-

рительно удалив из него бумажный диффузор и его верхний фиксатор,

прикрепив клеем "Момент" плошадку взвешивания к внутренней поверх-

ности катушки, мы не только зафиксировали ее в наиболее эффективной

точке взаимодействия магнитного и электрического полей (определено

экспериментально), но и решили проблему возврата катушки на исход-

ное место после снятия напряжения за счет веса этой площадки (рис.

6). Теперь подьем площадки взвешивания происходил без видимых откло-

нений величины токового сигнала с доступной нам точностью измере-

ний в 0,0001 А цифровым вольтметром В7-40.

Поскольку неисключен резкий подъем площадки в процессе прог-

раммного подбора необходимой величины тока, для предотвращения раз-

брызгивания взвешиваемых жидкостей и рассыпания сыпучих навесок мы

снабдили конструкцию ограничителем подъема площадки с зазором меж-

ду ними в 1 мм, достаточным для датчика фиксации подъема веса, сос-

тоящего из излучателя и приемника инфрокрасного излучения (рис. 6).

ДАТЧИК ПОДЪЕМА ВЕСА

Вес считается измеренным, если площадка поднялась при значении

токового аналога I, но не поднялась при I-MP (MP - величина тока, со-

оттветствующая Младшему Разряду цифроаналогового преобразователя).

Для определения момента подъема площадки взвешивания мы использовали

оптический датчик отслеживания перекрытия просвета, состоящий из ма-

ломощного излучателя и приемника инрокрасного (невидимомого) спектра.

Электрическая пинципиальная схема излучателя инфрокрасного диа-

пазона заимствована нами из концевых выключателей ограничения подачи

головки принтера СМП 6327 [5], которая приведена на рис. 7.

Принцип работы этого излучателя следующий:

1) емкость C2 постепенно заряжаясь создает на базе транзистора

VT1 потенциал, достаточный для отпирания перехода колектор-эмитер,

в результате чего потенциал на базе транзистора VT2 становится нуле-

вым и сопровождается отпиранием его перехода эмитер-колектор, при

этом возрастание положительного потенциала на базе транзистора VT3

приводит к плавному отпиранию его перехода колектор-эмитер с протека-

нием тока через резистор R4 и диод VD1 (АЛ107А [16]), сопровождаемый

излучением инфрокрасного спектра. В процессе протекания тока через пе-

реход эмитер-коллектор транзистора VT2, емкость C2 разряжается и запи-

рает транзистор VT1, который в свою очередь, запирает и транзистор VT2.

После запирания транзистора VT2, потенциал на базе транзистора VT3

падает и он запирается, прекращая свечение диода VD1. Затем этот

процесс повторяется в уже описанной последовательности.

Импульсный режим излучения выбран нами для исключения оценки

воздействия посторонних источников излучения на приемник и для по-

вышения мощности излучения диода КД107 с 6 до 45 мВт.

Емкость C1 включена в принципиальную электрическую схему (рис.

7) для сглаживания негативного воздействия импульсов тока на ста-

билизатор блока питания.

Достижение в процессе подбора цифрового аналога тока значения,

при котором преодолен вес взвешиваемого вещества, сопровождается под-

нятием площадки для взвешивания и, как следствие, перекрытием створа

излучатель-приемник. Для идентификации данного события и необходим

приемник импульсного излучения инфрокрасного спектра. От схемы прием-

ника, используемого в принтере СМП-6327 [5], пришлось отказаться, так

как он не обеспечивал устойчивого приема при расстояниях более 10 мм

между излучателем и приемником. Мы использовали в качестве приемника

часть электрической принципиальной схемы приемника инфрокрасного из-

лучения бытового телевизионного приемника [6], произведя только за-

мену фотоприемника ФД263 на более миниатюрный, но менее чувствитель-

ный фотодиод VD1 (FD125) венгерского производства (рис. 8).

Приемник представляет собой двухкаскадный усилитель с общим ко-

лектором, выполненный на базе транзисторов VT1 - VT3 (КТ315). Импуль-

сы инфрокрасного излучения воспринимаются фотодиодом VD1, при этом

он открывается и запирается, при отсутствии таковых. Таким образом,

транзистор VT1 играет роль согласователя высокочастотных импульсов,

в диапазоне 0...25 мВ, в низкочастотные с незначительным их усилени-

ем в 1,5...2 раза. Этот сигнал с эмитера VT1 поступает на базу тран-

зистора VT2, включенного в режиме его усиления при отпирании/запира-

нии перехода эмитер-колектор с коэффициентом 9-10, определяемым ном-

иналом резистора R5. При этом на выходе приемника, с колектора тран-

зистора VT2, генерируются колебания с амплетудой 5 Вольт и частотой

задаваемой излучателем. Резисторы R6, R7 и транзистор VT3 образуют

цепь положительной обратной связи между его входом и выходом, необ-

ходимой для их согласования и подавления помех.

Поскольку, удовлетворительных результатов мы добились уже пос-

ле двух каскадов усиления сигнала, то надобность в двух последующих,

имеющихся в схеме [6], отпала. Кроме того, мы понизили напряжение пи-

тания с 12 Вольт в схеме [6], до 5 Вольт, чтобы избежать обратного

преобразования, в связи с требованиями по входу ОЭВМ КР1816ВЕ51, без

ощутимого ухудшения параметров приемника.

Выходной сигнал приемника поступает на вход Р3.2 (INT0) ОЭВМ

КР1816ВЕ51 и, если после очередного изменения токового сигнала на

выходе цифроаналогового преобразователя, на входе P3.2 ОЭВМ не об-

наружены пульсации - значит вес преодолен.

ДАТЧИК ТЕМПЕРАТУРЫ ВОЗДУХА

Мощный блок питания будет источником излучения тепла в ог-

раниченный объем изделия, а, поскольку, величина сопротивления

резисторов зависит от их температуры, то для обеспечения аналити-

ческой точности взвешивания либо необходимо снабдить весы обратным

аналогоцифровым преобразователем, либо достаточно точным электрон-

ным датчиком температуры. Кроме того, наличие такого устройства в

аналитических весах необходимо из-за непостоянства комнатной тем-

пературы не только в разные периоды года, но и в течение суток.

Так как изготовление 21-разрядого аналоговоцифрого преобразователя

более трудоемко, затратно и сложнее, чем датчика температуры, то

мы и остановили свой выбор на последнем.

Одним из простейших видов датчика температуры, ориентирован-

ного на использование возможностей ОЭВМ КР1816ВЕ51, является преоб-

разователь температура-частота. ОЭВМ КР1816ВЕ51 имеет два входа

(P3.2-INT0, P3.3-INT1), изменение состояния которых (переход из "вы-

сокого" состояния сигнала в "низкое" или, наоборот) вызывает аппа-

ратное прерывание выполняемой программы с вызовом программы обра-

ботки этого события. Такая реакция ОЭВМ позволяет программно вы-

числить время между двумя смежными прерываниями или вычислить час-

тоту изменения сигнала.

Сущность этого датчика сводится к созданию генератора, час-

тота которого управляется напряжением из схемы измерения изменения

термосопротивления. В качестве генератора управляемого напряжением

можно использовать микросхему К531ГГ1 (мультивибратор автоколе-

бательный), схемы возможного применения которой приведены в [10],

а задание управляющего напряжения - посредством усиления напряжения

на выходе "моста" резисторов, в одно из плеч которого включено тер-

мосопротивление, при помощи операционного усилителя. Однако мы

смогли найти только старый вариант этого чипа - К218ГГ1-Н [11] и

при тестировании созданного на его основе преобразователя столкну-

лись с проблемой собственной нестабильности генерируемой микро-

схемой частоты при измененнии температуры воздуха, погрешность

в диапазоне температур 0...60°С, допустимых для электронных ком-

понентов данной технологии изготовления, варьировала в интервале

-11...+17% (рис. 9), что неприемлимо для обеспечения аналитической

точности взвешивания. Кроме того, микросхема К218ГГ1-Н имеет от-

носительно большое энергопотребление - около 100 мВт.

Аналогичные проблемы возникли при попытке ее замены на мик-

росхему К1108ПП1 (преобразователь напряжение-частота), которая кро-

ме этого требовала питания +15 В/-15 В.

Контроль стабильности частоты преобразователя мы производили

посредством помещения макета схемы в муфельную печь или морозильную

камеру холодильника с размещением термодатчика вне их. При такой

схеме, вследствие неизменности температуры термодатчика (25°С),

частота на выходе преобразователя должна быть стабильной. О непри-

емлемости преобразователя на микросхеме К218ГГ1-Н свидетельствует

кривая зависимости частота - собственная температура схемы, приве-

денная на рис. 9.

Схема преобразователя температура-частота, приведеннная в

[12], была свободна от отмеченных недостатков (рис. 10). Ее работа

основана на том, что прямое напряжение кремниевого диода, питае-

мого от источника постоянного тока линейно изменяется с температу-

рой в диапазоне 0..60°С. Диод VD1 (IN914) и резистор R2 образуют

делитедь напряжения, питающийся от генератора постоянного тока.

При возрастании температуры прямое падение напряжения на диоде

уменьшается, закрывая транзистор VT1 (ZTX300). Вследствие этого

выходное напряжение транзистора VT1 будет возрастать, что дает воз-

можность использовать его в качестве напряжения, управляющего ге-

нератором D1.

Приведенные в схеме [12] импортные электронные компоненты бы-

ли заменены нами на их аналоги советского производства: D1 на

К176ЛП1 [10], VT1 - КТ617А, VT2 - КТ620А [15], VD1 - КД521А.

В пределах указанных номиналов электронных компонентов при

температуре 0°С частота составила 478 Гц с приростом в 3 Гц на

градус температуры. Зависимость температура-частота имела практи-

чески линейный вид в диапазоне температур 0...60°С и соответство-

вала характеристикам, приведенным в работе [12]. Время установки

стабильной частоты при резком перепаде температур не более 25 се-

кунд. Однако работа преобразователя не отличалась высокой точнос-

тью, а самое неприятное - стабильностью (рис. 11), хотя область

устойчивой работы схемы расширилась на 5 градусов, а сама погреш-

ность уменьшилась до -10...+10%.

Для устранения отмеченных недостатков мы повысили напряжение

питания преобразователя с 9 до 12 Вольт, заменили "комплиментарную

пару" транзисторов (два транзистора, изготовленные по одинаковой

технологии n-p-n и p-n-p типов, коэффициенты усиления которых

равны) на более мощную (КТ972Б и КТ973Б) и подобрали более чувст-

вительный и стабильный диод (КД407А). Такие изменения являются до-

пустимыми для микросхемы К176ЛП1, так как она является аналоговой

и содержит набор трех p- и трех n-канальных КМОП-транзисторов. Эти

преобразования позволили не только стабилизировать работу преобра-

зователя температура-частота (рис. 12), но и избавиться от необхо-

димости понижения имеющегося в нашем блоке питания напряжения в 12

Вольт до необходимых для схемы [12] 9 Вольт. Зона стабильной рабо-

ты преобразователя температура-частота расширилась на 35°С (рис.

12) и расположилась в интервале приемлемых температур для работы

аналитических весов в условиях помещений (5...60°С), с учетом дос-

таточно высокого тепловыделения из компонентов блока питания ана-

литических весов. Погрешность стабилизации схемы в указанном диа-

пазоне изменяется в интервале -1.9...+1.7%, хотя в интервале тем-

ператур 0...3°С становится неприемлимой, достигая -13%.

В измененном варианте были получены следующие характеристики

преобразователя температура-частота: частота 2390 Гц при 0°С с

приростом от 3 до 8 Гц на градус температуры в интервале 0...100°C

(рис. 13). Нелинейностью графика зависимости температура-частота в

интервале 75...100°С можно пренебречь, так как достижение таких зна-

чений температуры в аналитических весах маловероятно, но даже при

проявлении данного события программа ОЭВМ КР1816ВЕ51 известит

пользователя о невозможности продолжения измерений. Тогда, зависи-

мость температура-частота может рассматриваться как линейная с при-

ростом на 3 Гц, на каждый градус увеличения температуры, и наоборот.

Тестирование схемы, приведенной в работе [12], и ее изменен-

ного нами аналога производилось сдедующим образом:

1) в аллюминиевой заготовке размером 38x50x10 были высверлены

3 отверстия диаметром 2.3, 4.2 и 5.9 мм для диода VD1, "жала" элек-

трического паяльника и спиртового градусника, соответственно

(рис. 14);

2) диод был запрессован в отверстие при температуре заготовки

в -5°С с таким расчетом, чтобы во всем исследуемом диапазоне тем-

ператур обеспечивался надежный контакт между ними;

3) отверстие для "жала" паяльника было выбрано из расчета, обе-

спечивающего вход его "жала" на глубину 19 мм при комнатной темпера-

туре в 25°С, а для градусника было увеличено на величину, исключа-

Страницы: 1, 2, 3


ИНТЕРЕСНОЕ



© 2009 Все права защищены.