бесплатно рефераты
 

Разработка блока управления тюнером спутникового телевидения

как сигналы запросов прерываний для МП. Эта особенность микросхемы

позволяет программно реализовать разрешения или запрет в обслуживании

любого внешнего устройства ввода/вывода без анализа запроса прерывания в

схеме прерывания системы.

В нашем случае необходимо запрограммировать микросхему 580ВВ55 на

вывод информации в режиме 0. Вот почему далее будет рассмотрен только этот

режим.

При работе микросхемы в режиме 0 обеспечивается простой ввод/вывод

информации через любой из 3-х каналов и сигналов управления обменом

информацией с периферийными устройствами не требуется. В этом режиме

микросхема представляет собой совокупность 2-х 8 разрядных и 2-х 4

разрядных каналов ввода или вывода. В режиме 0 возможны 16 различных

комбинаций схем ввода/вывода каналов ВА, ВВ, ВС. Это определяется

комбинациями в разрядах D4; D3; D1; D0 регистра управляющего слова.

Для нашего случая код должен иметь следующее указание:

|D4 |D3 |D1 |D0 |ВА;ВВ;ВС |

|0 |0 |0 |0 |вывод |

В режиме 0 входная информация не запоминается, а выходная хранится в

выходных регистрах до записи новой информации в канал или до записи нового

режима.

Графическое представление режима 0 показано на рисунке 8.

Канал адреса

Канал управления

Канал данных

D7[pic]D0

I/0 I/0 BC7[pic]BC0 BA7[pic]BA0

BB7[pic]BB0

Рисунок 8.

Для электрического соединения микросхемы 580ВВ55 и схемы управления

необходимо:

1) шину данных D0[pic]D7 схемы управления соединить с выводами

D0[pic]D7 микросхемы 580ВВ55.

2) Два младших разряда адресной шины соединить с выводами A0[pic]A1

микросхемы 580ВВ55.

3) Выводы [pic], [pic] микропроцессора 1821ВМ85 соединить с выводами

[pic], [pic] микросхемы 580ВВ55 соответственно.

4) На вход SR «Установка в исходное состояние» микросхемы 580ВВ55

подать низкий уровень (подключить к корпусу).

1.2.11. Фиксирующая схема.

Как уже отмечалось выше необходимо подавать сигналы в блок индикации

№ канала (2 индикатора) в строго определенные моменты времени. Для этого

необходимо предусмотреть устройство, которое по сигналам от процессора,

будет пропускать информацию на один из индикаторов блока индикации. В

качестве элементов фиксирующей схемы будем использовать 2 регистра типа

1533UP23.

Регистр, аналогичный UP22, нос 8 тактируемыми триггерами. Регистр

принимает и отображает информацию синхронно с положительным перепадом на

тактовом входе.

| |EO |C |Dn |Выход |

|Загрузка и считывание |Н | |«Н», «В» |«Н», «В» |

| | | | |соответственно |

|Загрузка регистра и |В | |«Н», «В» | |

|разрыв выходов | | | | |

Таким образом, подавая тактирующие сигналы на вход С (№11) регистра

1533UP23, мы разрешаем прохождение сигналов на соответствующий индикатор в

строго определенные моменты времени.

Un - № 20

Земля - № 10

1.2.12. Согласующая схема.

Для организации вывода информации в остальные блоки тюнера будем

использовать регистр 1533UP23, тактируемый сигналами от микропроцессора.

Принцип включения и управления регистра 1533UP23 рассмотрен в

предыдущей главе.

Для приема информации в устройство управления будем использовать

шинный формирователь 1533АП6. Как известно шинный формирователь

обеспечивает передачу информации в обоих направлениях. Для обеспечения

только ввода данных вывод №1 соединим с корпусом. Если появится

необходимость в выводе большего количества информации из устройства

управления, то с помощью микросхемы 1533АП6 можно будет решить данную

проблему.

Более подробная информация о микросхеме 1533АП6 приведена в главе

«Шина данных микропроцессора 1821ВМ85».

1.2.13. Схема дешифрации.

В предыдущих главах были рассмотрены основные блоки схемы управления

и было отмечено, что МП в строго определенные моменты времени должен

взаимодействовать с определенными микросхемами. Поэтому в данной схеме

необходимо предусмотреть устройство, которое по сигналам от процессора,

будет подключать к его шинам адреса или данных ту или иную микросхему или

группу микросхем. Из этого можно заключить, что в схеме системы должен

протекать некоторый процесс однозначного выбора и он организуется подачей

на линии адреса А11[pic]А15 определенного кода выбора или сигнала

разрешения доступа к отдельному блоку или блокам. К счастью, эта проблема

является классической и она имеет простое решение. В частности можно

использовать дешифратор, выполненный в виде ТТЛ устройства среднего уровня

интеграции, предназначенного для преобразования двоичного кода в напряжение

логического уровня, которое появляется в том выходном проводе, десятичный

номер которого соответствует двоичному коду. В последствии выходной провод

дешифратора подключают к входу «Выбор микросхемы» нужной микросхемы

(например вывод №18 (CS) микросхемы 537РУ10).

В качестве дешифратора будем использовать микросхему 1533ИД7. Выбор

данного дешифратора обусловлен количеством выходных линий и нагрузочной

способностью.

Микросхема 1533ИД7 – высокоскоростной дешифратор, преобразующий

трехразрядный код А0[pic]А2 (№1[pic]3) в напряжение низкого логического

уровня, появляющегося на одном из восьми выходов 0[pic]7. Дешифратор имеет

трехвходовый логический элемент разрешения.

В таблице показано, что дешифрация происходит, когда на входах

[pic](№4) и [pic](№5), напряжение низкого уровня, а на входе Е3(№6)

высокого. При других логических уровнях на входах разрешения, на всех

выходах имеются напряжения высокого уровня.

|[pic] |[pic] |В |Q |[pic] |

|Н |Х |Х |Н |В |

|Х |В |Х |Н |В |

|Х |Х |Н |Н |В |

|В |Н |[pic] | | |

|В |[pic] |В | | |

|[pic] |Н |В | | |

Если согласно этим условиям мультивибратор запущен, выходной импульс

можно продолжить, подав на вход [pic] напряжение низкого уровня (или на

вход В-высокого). С момента этой дополнительной операции до окончания

импульса пройдет время [pic]вых.

Схема включения:

5

9

12

10

16 5B

6 R[pic]

C[pic]

11 7

8

1.3. Расчеты параметров и элементов принципиальной схемы.

1.3.1. Расчет адресной шины и шины данных

микропроцессора 1821ВМ85.

При проектировании адресной шины и шины данных необходимо оценить

величину токовой нагрузки, т.к. они связаны со множеством устройств,

подключенных параллельно. Если для адресной шины и шины данных характерен

ток, по величине превосходящий допустимое значение на выходе МП, то такую

линию необходимо буферировать.

a) Расчет адресной шины:

Для микропроцессора максимально допустимая нагрузка на адресной линии

составляет:

Uвых L=0,45 В Iвых L=2 мА

Uвых H=2,4 В Iвых H=400 мкА

для регистра 1533 UP22:

Iвх Н=20 мкА Iвх H[pic]=8[pic]20=160 мкА[pic]400 мкА

Iвх L=0,1 мА IвхL[pic]=8[pic]0,1=0,8 мА[pic]2 мА

Таким образом входной ток микросхемы 1533ИР22 не является большим для

МП 1821ВМ85.

Теперь проверим, обеспечивается ли нагрузочная способность для

элементов схемы, которые являются адресной информации.

А11[pic]А15

+5В А0[pic]А15

А0[pic]А7

А8[pic]А10 А8[pic]А12,А15

1533ИР22 А0[pic]А1

Iвх L=Iвх Н=20 мкА – для ОЗУ

Iвх L=Iвх Н=10 мкА – для ПЗУ

Iвх L=Iвх Н=14 мкА – для устройства в/в.

Iвх L[pic]=Iвх Н[pic]=8[pic]20+8[pic]10+2[pic]14=268 мкА[pic]2,6 мА

Iвх L=24 мА для 1533ИР22

Iвх Н=2,6 мА

Адресные линии А8[pic]А15 буферировать не надо, т.к.

Iвх Н[pic] =3[pic]20+6[pic]10+5[pic]20=220 мкА[pic]400 мкА

Iвх L[pic]=3[pic]20+6[pic]10+5[pic]0,1 мА=620 мкА[pic]2 мА

b) Расчет шины данных.

Для микропроцессора максимально допустимая нагрузка на шине данных

составляет:

IвыхL=2 мА Uвых L=0,45 В

Iвых H=400 мкА UвыхH=2,4 В

для DНШУ 1533 АП6:

Iвх L=0,1 мА Iвх L[pic]=8[pic]0,1=0,8 мА

Iвх Н=20 мкА Iвх Н[pic]=8[pic]20=160 мкА

Выходной ток МП является большим, чем входной ток микросхемы 1533АП6,

а значит обеспечивается нагрузочная способность по току

Проверим, обеспечивается ли микросхемой 1533АП6 нагрузочная информация

для элементов схемы, которые являются «потребителями» информации о данных.

При записи информации в качестве нагрузки выступают следующие элементы

схемы: РЗУ, 3 регистра 1533ИР23, Устройство В/В КР580ВВ55.

Iвх L[pic]=20 мкА[pic]8+0,2 мА[pic]24+14мкА[pic]8=5,072 мА

Iвх Н[pic]=20 мкА[pic]8+20мкА[pic]24+14 мкА[pic]=752 мкА

Для микросхемы 1533 АП6

IвыхL=24 мА[pic]5,072 мА

Iвых H=3 мА[pic]752 мкА

Общий нагрузочный ток не является большим для ДНШУ 1533АП6.

При считывании информации из ОЗУ, ПЗУ или поступления информации от

микросхемы 1533 АП6 (DD16) возникать проблем с перегрузкой не должно, т.к.:

IвыхL=2,1 мА для ПЗУ 573РФ4

Iвых H=0,1 мА

IвыхL=4 мА для ОЗУ 537РУ10

Iвых H=2 мА

IвыхL=24 мА для 1533 АП6

Iвых H=3 мА

Информация поступает в МП через ДНШУ 1533АП6 (DD5), для которого:

Iвх L=0,1 мА Iвх L[pic]=0,8 мА

Iвх Н=20 мкА Iвх Н[pic]=160 мкА

c) Расчет шины AD0[pic]AD7 таймера 512ВИ1

Iвх L= Iвх Н=1 мкА Iвх [pic]=8[pic]1 мкА=8 мкА

Очевидно, что информация в таймер (как адресная, так и информация о

данных ) может поступать непосредственно с выходов AD0[pic]AD7

микропроцессора, т.к. для него:

IвыхL=2 мА Uвых L=0,45 В

Iвых H=400 мкА UвыхH=2,4 В

1.3.2. Расчет ЦАП.

На выходе ОУ Uвых ~коду на входе 572ПА1. Т.к. разрядность ЦАП N=10,

значит возможно 2N=1024 различных значений Uвых.

Шкала изменений выходного напряжения [pic]0[pic]Uon[pic]

Uon=-9 В для каналов видео и звука.

Uon=-6 В для канала поляризации.

Следовательно дискрет напряжения на входе составляет:

a) Для видео:

[pic]U=[pic]=8,8 мВ

Пример: код Uвых,В

0000000000 0

0000000010 17,6 мВ

1111111111 9

b) Для звука:

[pic]U=[pic]=70,86 мВ

Пример: код Uвых,В

0000000000 0

0000001000 70,86 мВ

0000010000 141,72 мВ

1111111000 9

c) Для поляризации:

[pic]U=[pic]=23,53 мВ

Пример: код Uвых,В

0000000000 0

0000000100 23,53 мВ

1011111100 4,41

Вывод:

1. Для канала видео напряжение на выходе меняется от 0 до 9 В с шагом 8,8

мВ.

2. Для канала звука напряжение на выходе меняется от 0 до 9 В с шагом 70,86

мВ.

3. Для канала поляризации напряжение на выходе меняется от 0 до 4,41 В с

шагом 23,53 мВ.

1.3.3. Расчет параметров КТ 3102 Б.

Необходимо обеспечить подачу U[pic]3 В на вход разрешения 561 КТ3.

В качестве стабилитрона будем использовать КС139А на Uст=3,9 В

при Iст=1,8 мА

R1=[pic]=[pic]=620 Ом

Е2=IэRн+UКЭ

Iэ=0 Е2=Uкэ

Uкэ=0 Iэ=[pic] пусть RH=1 кОм

5 Iб=0,1 мА

4

3

2

1

5 10 15 20 Uкэ, В

Из графика следует, что Iэ[pic]3,1 мА

Iб=0,1 мА

Iб,мА

0,3 Uкэ=5 В

0,2 Uбэ=0,6 В

0,1

0,1 0,2 0,3 0,4 0,5 0,6 0,7 Uбэ, В

Uбэ=0,6 В Uбэ+URN=3,1+0,6=3,7 В

Т.к. Uст=3,9 В, значит необходимо в базу транзистора включить R2

Uст=UR2+Uбэ+URN

UR2=0,2 В

R2=[pic]=[pic]=2 кОм.

1.3.4. Цепь резонатора микросхемы 512 ВИ1.

Данные на резонансную цепь приводятся как справочный материал

(радиоежегодник 1989 г.).

Если используется резонатор на 32768 Гц, то

R16=470 кОм

R7=22 мОм

С24=10 пФ

С25=20 пФ

С26=100 пФ.

1.3.5. Расчет RC-цепи микросхемы 1533АГ3.

Из справочного материала известно, что для микросхемы 1533АГ3

[pic]вых=0,45 R[pic]C[pic]

Нам необходимо обеспечить [pic]вых порядка 45 мкс

Пусть R[pic]=10 кОм, тогда С[pic]=10 нФ.

1.3.6. Расчет элементов цепи опорного напряжения.

а)

VD5 – КС191Ж

Uст=9,1 В

Iст min=0,5 мА

Icn max=14 мА

U1=-12 В

Пусть R4=390 Ом;

I=[pic]=7,4 мА

Вывод: при данном сопротивлении полученное расчетное значение тока

стабилизации равное 7,4 мА попадает в диапазон допустимых значений тока

стабилизации для данного стабилитрона.

В) VD3 – КС162

Uст=6,2 В, U2=-12 В

Iст min=3 мА

Iст max=22 мА

Пусть R5=1,2 кОм;

I=[pic]=4,8 мА

Вывод: при данном сопротивлении полученное расчетное значение тока

стабилизации равное 4,8 мА попадает в диапазон допустимых значений тока

стабилизации для данного стабилитрона.

1.4. Справочные данные.

1821ВМ85

Допустимые предельные значения:

1. Температура окружающей среды - -10[pic][pic]С.

2. Направление на всех выводах по отношению к корпусу –

-0,5[pic]7 В.

3. Мощность рассеивания – 1,5 Вт.

Статические параметры в диапазоне температур -10[pic][pic]С.

|Параметр |Значение |Условия |

| |min |max | |

|Uвх L, В | | | |

|Uвх H, В | | | |

|Uвых L, В | | |Iвых L=2 мА |

|Uвых Н, В | | |Iвых H=- 400 мкА |

|Iпит, мА | | | |

|Iутеч вх, мкА | | |Uвх=Un |

|Iутеч вых, мкА | | |0,45Un[pic]Uвых[pic]U|

|UL на вх RESET,В | | |n |

|UH на вх RESET, В | | | |

| |- 0,5 |0,8 | |

| |2,0 |Un+0,5 | |

| |- |0,45 | |

| |2,4 | | |

| | |170 | |

| | |[pic]10 | |

| | |[pic]10 | |

| |- 0,5 |0,8 | |

| |2,4 |Un+0,5 | |

576 РФ4

Статические параметры в диапазоне температур - 10[pic][pic]С.

|Параметр |Норма |

| |min |Max |

|Uвх L, В | | |

|Uвх H, В | | |

|Uвых L, В | | |

|Uвых Н, В | | |

|Iвых L, мА | | |

|Iвых Н, мА | | |

|Iпотр, мА | | |

|Iпотр по вх. UPR,, мА | | |

| |0 |0,4 |

| |2,4 |5,25 |

| |- |0,45 |

| |2,4 |- |

| |- |2,1 |

| |- |0,1 |

| |- |70 |

| |- |10 |

Эксплуатационные параметры:

1. Время хранения информации: при наличии питания – не менее 25000 ч; при

отсутствии – не менее 105 часов.

2. Un – 5 В

UPR – 5 В (считывание)

21,5 В (программирование)

3. Pпотр – не более 420 мВт.

4. tвыб.адр. – не более 300[pic]450 мс.

tвыб.разр. – не более 120[pic]150 мс.

5. Число циклов перепрограммирования – не менее 25.

6. Выход – 3 состояния.

7. Совместимость по вх. и вых. С ТТЛ схемами.

8. Ёмкость – 65536.

9. Организация – 8к х 8.

537 РУ10.

Статистические параметры в диапазоне температур -10[pic][pic]С.

|Параметр |Норма |

| |min |max |

|Uвх L, В | | |

|Uвх H, В | | |

|Uвых L, В | | |

|Uвых Н, В | | |

|Iвых L, мА | | |

|Iвых Н, мА | | |

|Iпотр, Un=5 В | | |

|Обращение, мА | | |

|Хранение, мА | | |

Страницы: 1, 2, 3, 4, 5, 6


ИНТЕРЕСНОЕ



© 2009 Все права защищены.