бесплатно рефераты
 

Нетрадиционные источники энергии и их влияние на окружающую среду

| |уровнями прилива и |выработка |

| |отлива, м |электроэнергии, Мвт |

|Северн, Англия |9.8 |1680 |

|Мон-Сен-Мишель, |8,4 |9700 |

|Франция | | |

|Белое море, Россия |5,7 |14400 |

|Мезень (эстуарий), |6,6 |1370 |

|Россия | | |

|Пассамакводди, США, |5,5 |1800 |

|Канада | | |

|Кобскук, США |5,5 |722 |

|Аннаполис, Канада |6,4 |765 |

|Майнас-Кобеквист, |10,7 |19900 |

|Канада | | |

|Камберленд, Канада |10,1 |1680 |

|Петиткодиак, Канада |10,7 |794 |

Помимо стоимости сооружения станции, у приливной энергии есть и

другие отрицательные стороны. Если приливная станция находится далеко от

ближайшего крупного центра использования энергии, потребуются длинные и

дорогие линии электропередачи. С другой стороны, такая передача на большие

расстояния становится все более обычной по мере создания новых и более

эффективных линий.

И наконец, следует упомянуть еще одну отрицательную черту приливной

энергии – то, что ее выработка непостоянна. Это легко понять, если на

минуту задуматься о ее природе. При обычной эксплуатации приливной энергии

электричество вырабатывается только в начале отлива, т. е. тогда, когда

уровень воды, запасенной в бассейне, в достаточной мере превышает ее

уровень в море. По мере снижения уровня воды в бассейне выработка

электроэнергии уменьшается и около нижней точки отлива падает до нуля,

поскольку разность уровней исчезает. Если приливная станция оборудована

реверсивными турбинами, то энергия может вырабатываться и за счет

наступающего прилива, но только после того, как уровень прилива превысит в

достаточной мере уровень воды позади плотины. Когда прилив достигает

максимальной высоты, выработка энергии снова приближается к нулю. Таким

образом, кривая выработки энергии снова приближается и падает дважды с

сутки в соответствии с двумя приливными циклами.

Эта циклическая выработка энергии вряд ли будет соответствовать

суточным потребностям в ней. Пиковая потребность и пиковая выработка могут

иногда совпадать, так как часы обоих приливов сдвигаются по мере смены

времен года, но чаще всего такого совпадения не будет. Поэтому поступление

энергии в сеть должно каким-то образом регулироваться. Это означает, что

выработка энергии другими, центральными, станциями должна обычно снижаться,

когда темп приливной выработки достигает максимума, и возрастать, когда он

падает. Фактически энергия от приливной электростанции достаточно регулярно

замещает энергию, вырабатываемую с помощью других средств. Если замещается

энергия, вырабатываемая станцией на угольном топливе, то экономится уголь.

Биологические и физические последствия постройки приливных

электростанций.

Физические последствия. Когда мы смотрим на приливы с их устрашающей

энергией, нам следует подумать о воздействии на окружающую среду приливных

бассейнов. Сосредоточимся на физических изменениях, которые могут произойти

с морской стороны приливной электростанции

Амплитуда прилива может увеличиваться всего лишь на 30 см, но даже

такое небольшое изменение чревато серьезными последствиями. Поступающие

приливные воды могут подняться на 15 см, а это способно привести к

вторжению морской воды в прибрежные колодцы и создать угрозу для строений,

расположенных вблизи верхней отметки прилива. Возможно ускорение береговой

эрозии, а низинные участки, включая дороги, будут затопляться, когда штормы

и увеличившиеся приливы объединят усилия. Береговая полоса будет

практически непригодна для использования из-за более высоких приливов.

Оценки площади береговой полосы, которая может быть потеряна из-за

приливного затопления, колеблются от 17 до 40 квадратных километров.

Конечно, местные потери зависят от крутизны склона и характера берега.

Отлив, который может оказаться ниже на 15 см, способен затруднить доступ к

лодкам и к воде с причалов. Увеличенная высота прилива может вызвать

поступление более соленой воды в устья рек и этим изменить соотношение

обитающих там водных организмов.

С увеличением амплитуды приливов возникнут усиленные приливные

течения, на 5-10% более быстрые, что может привести к размыванию и переносу

песчаных отмелей и к заполнению песком существующих судоходных русел, а в

результате – к необходимости составления новых навигационных кар. Но в этом

случае суда вскоре начнут застревать, по мере того как проходы будут

изменяться из-за перемещения песка. Более быстрые течения затруднят

обособление нефтяных пятен, но вместе с тем они же будут быстрее разгонять

нефть.

Биологические последствия. Постройка крупной приливной электростанции

может привести не только к местным биологическим последствиям. В бассейне

позади приливной станции будет оказывать воздействие на важное

биологическое пространство вдоль побережья океана. Эта полоса, называемая

приливной зоной простирается от точки наивысшего прилива (или брызг от

приливных волн) до нижней точки, обнажающейся при отливе. (Обе эти границы

несколько смещаются со сменой времен года.)

В этой зоне биологические сообщества состоят, во-первых, из

организмов, проводящих здесь свое время или большую часть его часть. На

песчаных берегах обитают роющие сообщества, такие, как крабы, креветки,

черви и некоторые двустворчатые моллюски, а на скалистых – организмы,

прикрепленные к скалам (мидии, устрицы, морские желуди, крупные водоросли).

В воде приливной зоны имеется еще один набор организмов - фитопланктон. Это

диатомовые водоросли, перидинеи; они приносятся и уносятся с водой

приливов.

Приливная энергия способна изменить относительный баланс между видами,

составляющими сообщества приливной зоны. Нам совсем не ясно, как личиночные

стадии морских видов смогут переносить проход через турбину. Больше того,

возможно, что такие вредные организмы, как перидинеи, вызывающие «красный

прилив» (такие приливы приводят к гибели рыбы и иногда делающих мясо

моллюсков ядовитым для людей), окажутся в благоприятном положении, а

размножение желательных видов, таких, как крабы или устрицы, может

пострадать. Кроме того, мы не знаем неверное, что ускорится в результате

постройки станций – эрозия или отложение осадочных материалов.

Появление приливной электростанции может не только повлиять на местные

сообщества, но и причинить вред мигрирующим видам. Проход через турбины

электростанции вряд ли принесет этим видам пользу. Для перекрытия входа

могут быть использованы сетки, но годность лестничных рыбоходов в качестве

обходного пути все еще остается под вопросом. Перелетные птицы, кормящиеся

на соленых маршах, такие, как песочники и ржанки, вероятно, будут находить

меньше пищи в приливном бассейна позади электростанции из-за гибели

организмов при проходе через турбину. Всё это локальные последствия, но

область их влияния может оказать более обширной.

Отдаленные биологические последствия при использовании приливной

энергии будут обусловлены усилением приливных течений в результате

увеличения амплитуды приливов. Более мощные приливные течения будут

нарушать температурную стратификацию воды, перемешивая слои с разной

температурой. Нижележащие холодные слои наиболее богаты питательными

веществами, которые постепенно оседают на дно. Поэтому с более холодной

водой в поверхностные слои будет поступать больше питательных веществ.

Летняя температура воздуха и воды может понизиться в среднем на 1 градус, и

вероятным следствием этого будет усиление туманов и морских ветров, а

биологическая продуктивность, по-видимому, увеличится. Обилие водорослей и

зоопланктона, скорее всего, возрастет, так же как и численность питающихся

ими организмов, но мы недостаточно осведомлены, чтобы знать, каким

конкретно видам это пойдет на пользу, а каким – во вред. Биологические

неясности, связанные со строительством станций на приливной энергии, пока

действительно очень велики.

Энергия ветра.

В поисках альтернативных источников энергии во многих странах немалое

влияние уделяют ветроэнергетике. Ветер служил человечеству на протяжении

тысячелетий, обеспечивая энергию для парусных судов, для размола зерна и

перекачивания воды. В настоящее время главное место занимает выработка

электроэнергии. Уже сегодня в Дании ветроэнергетика покрывает около 2%

потребностей страны в электроэнергии. В США на нескольких станциях

работает около 17 тысяч ветроагрегатов общей мощностью до 1500 МВт.

Ветроэнергетические устройства выпускаются не только в США и Дании, но и

Великобритании, Канаде, Японии и некоторых других странах.

Для того чтобы строительство ветроэлектростанции оказалось

экономически оправданным, необходимо, чтобы среднегодовая скорость ветра в

данном районе составляла не менее 6 метров в секунду. В нашей стране

ветряки можно строить на побережьях черного, Балтийского и Каспийского

морей, в Нижнем Поволжье или на юге Западной Сибири, в Центральном

Черноземном районе. Но самой большой ветропотенциал имеют побережья

Северного Ледовитого и Тихого океанов, в том числе Ямал, Таймыр, Камчатка,

Чукотка и близлежащие острова. В нынешнюю эпоху высоких цен на топливо

можно думать, что ветродвигатели окажутся конкурентоспособными по

стоимости и смогут участвовать в удовлетворении энергетических нужд страны.

Конструкция ветродвигателей.

Ветродвигатель вырабатывает энергию, когда ветер давит на его лопасти.

Чем длиннее лопасть, тем больше ветровой энергии она может перехватить.

Точно также, чем больше скорость ветра, тем больше его давление на лопасти

и тем больше количество перехватываемой энергии.

Выход энергии не находится в линейной зависимости от длины лопасти и

от скорости ветра: он растет пропорционально квадрату длины лопасти и кубу

скорости ветра.

Обратим внимание на то, что при скорости ветра 33 километра в час

удлинение лопасти в 4 раза (с15 до 60 м) увеличивает выработку энергии в 16

раз. Заметим также, что при длине лопасти 30 м ветер со скоростью 50

километров в час обеспечивает выработку электроэнергии, в 26 раз большую,

чем ветер со скоростью 17 километров в час. Именно поэтому инженеры

склоняются в пользу крупных ветродвигателей и стремятся перехватить ветер

на большой высоте.

Большинство крупных ветродвигателей, сооружаемых сейчас или уже

действующих, рассчитано на работу при скоростях ветра 17 – 58 километров в

час. Ветер со скоростью меньше 17 километров в час дает мало полезной

энергии, а при скоростях более 58 километров в час возможно повреждение

двигателя.

| |Скорость ветра, км в час. |

|Тихая погода; дым поднимается |2-5 |

|прямо вверх | |

|Ветер ощущается лицом; листья |6-11 |

|шуршат | |

|Листья и мелкие ветки двигаются |12-20 |

|непрерывно | |

|Ветер поднимает пыль, гонит |21-29 |

|обрывки бумаги; небольшие ветви | |

|качаются | |

|Небольшие деревья раскачиваются;|30-39 |

|волны на воде имеют гребни | |

|Крупные ветви двигаются; трудно |40-50 |

|пользоваться зонтом | |

|Большие деревья раскачиваются |51-61 |

|ветром; трудно двигаться против | |

|ветра | |

|Ветер обламывает мелкие ветви с |62-74 |

|деревьев | |

|Начинается повреждение строений |75-87 |

|Ветер валит отдельные деревья; |88-101 |

|возможно сильное повреждение | |

|строений | |

|На суше такие скорости ветра |102-115 |

|редки; происходят многочисленные| |

|повреждения строений | |

|Ураганные явления |116-212 |

Ветродвигатели не следует рассчитывать на перехват штормовых ветров.

Даже если такой ветер обеспечивает получение намного больше энергии, чем

слабые ветры, он производит столь сильное давление на лопасти, что вся

машина может быть разрушена. Кроме того, продолжительность времени, когда

дуют штормовые ветры, настолько мала, что вклад штормовых ветров в

суммарную выработку энергии ничтожен, и это делает подобный риск

бессмысленным. Чтобы устранить проблему штормовых ветров, лопасти

ветродвигателей изгибают так, чтобы они были слегка повернуты в одну

сторону для уменьшения напора ветра; благодаря этому полные удары сильных

порывов не повреждают пропеллер. Эта старая практика известна как

«оперение». Чтобы предотвратить поломку лопастей, применяют также новые

материалы, способные противостоять большим нагрузкам.

Другие проблемы в конструкции ветродвигателей обусловлены просто

природой системы, необходимой для перехватки энергии ветра. Двигатели

обычно устанавливают на высоких башнях, чтобы лопасти были открыты более

сильным ветрам, дующим на большой высоте. Ближе к поверхности дома,

деревья, небольшие холмы и т. п. Сдерживают и ослабляют ветер. Поэтому

нужны высокие мачты. Однако тяжелое оборудование – пропеллер, коробка

передач и генератор – должно размещаться на верхушке мачты, и это требует

прочной конструкции.

Еще одну проблему использования энергии от ветродвигателя создает

природа самого ветра. Скорость ветра варьирует в широких пределах – от

легкого дуновения до мощных порывов; в связи с этим меняется и число

оборотов генератора в секунду. Для устранения этого переменный ток,

вырабатываемый при вращении оси, выпрямляют, т. е. преобразуют в

постоянный, идущий в одном направлении. При больших размерах ветродвигателя

этот постоянный ток поступает в электронный преобразователь, который

производит стабильный переменный ток, пригодный для подачи в энергетическую

систему. Небольшие ветродвигатели вроде тех, что используют на

изолированных фермах или на морских островах, подает выпрямленный ток в

большие аккумуляторный батареи вместо преобразователя. Аккумуляторные

батареи совершенно необходимы для запасания электроэнергии на периоды,

когда ветер слишком слаб для выработки какой-либо энергии.

Более трудна проблема регулирования всей системы электростанций. Также

как на приливных станций, здесь бывают периоды, когда генераторы

вырабатывают мало энергии или совсем ее не производят. В такое время

необходимо где-то увеличить выработку тока обычной электростанцией, чтобы

покрыть потребность в нем.

Проблемы окружающей среды.

Вызывает ли ветровая энергетика загрязнение воздуха? Нет. Требует ли

она воды для охлаждения и не вызывает ли теплового загрязнения? Нет.

Потребляет ли она топливо? Нет. Но она производит шум, требует земельной

площади и материалов для конструкций. Она также оказывает визуальное

воздействие, но опоры линий дальней электропередачи имеют высоту, близкую к

высоте самого ветродвигателя из числа ныне разрабатываемых, а градирни

бывают еще выше.

Имеется еще один вид воздействия ветровой энергетики. Большие

ветродвигатели вращаются со скоростью около 30 оборотов в секунду. Это

близко к частоте синхронизации телевидения. Поэтому крупные ветродвигатели

могут мешать приему передач на расстоянии до 1,6 км. При использовании

лопастей из стекловолокна, которые оказались дешевле металлических,

расстояние помех уменьшается примерно вдвое. Но так дело обстоит лишь с

большими ветродвигателями, и можно ожидать, что это не будет проблемой для

меньших двигателей.

Лопасти ветродвигателей могут убить птиц, но трудно предсказать, в

каких масштабах это будет происходить.

Несомненно, какой-то ущерб окружающей среде может наноситься также

добычей руды, изготовлением аккумуляторных батарей и гораздо большим

количеством проводов и линий передачи, необходимых для сбора электроэнергии

от многочисленных ее источников. Но в целом, если мы учтем все затраты на

охрану среды, они окажутся очень малыми.

Итак, обзор различных альтернативных источников энергии показывает,

что на пороге широкомасштабного промышленного внедрения находятся

ветротурбины и солнечные батареи. Если добавить к этому энергосбережение,

есть надежда на решение встающих энергетических проблем; таким образом,

строительство новых атомных и тепловых электростанций вовсе не обязательно.

Однако их придется еще какое-то время сохранить в качестве резервных для

стабильного энергообеспечения. Что же касается отдаленного будущего, то в

первую очередь следует разрабатывать системы запасания энергии,

вырабатываемой солнечными и ветровыми станциями.

С точки зрения окружающей среды и устойчивого развития эти

альтернативные источники электричества вполне надежны. К сожалению, они

никак не решают проблему сокращения запасов сырой нефти, которая по-

прежнему необходима для транспорта.

Пассивные солнечные нагревательные системы весьма рентабельны, и имеет

смысл включать их в проекты всех новых зданий. Однако, пока еще

существующие и используемые здания не изменятся, потребление традиционных

энергоресурсов не снизится; в лучшем случае замедлится его рост.

Действительно сократить их использование могло бы повсеместное улучшение

теплоизоляции зданий и установка в низ «задним числом» солнечных систем

отопления и водонагрева. В таком случае появится возможность перебросить

часть мазута, потребляемого в бытовых целях, на нужды транспорта. Однако в

самом благоприятном случае проблемы будущего дефицита сырой нефти,

необходимой для производства, автомобильного горючего.

Поэтому нужно сосредоточить основное внимание на транспортном секторе.

Что Вы можете сделать?

Хорошо информированные и активные граждане могут многое сделать для

поддержки и развития более сбалансированной и экологически устойчивой

политики. Кроме того, необходимо писать в соответствующие органы, требуя,

чтобы они поддержали следующие мероприятия:

- финансирование в первую очередь не ядерной энергетики, а

исследований и технических разработок в области использования

солнечной энергии для получения водорода, дешевого производства

солнечных батарей и легких, недорогих аккумуляторов с высокой

емкостью;

- перераспределение ассигнований идущих на прокладку автострад

(только стимулирующих потребление топлива), на строительство

рельсовых электротранспортных систем;

- возобновление экономического стимулирования энергосбережения и

использования солнечных нагревательных систем; вкладывая деньги в

эти перспективные направления, мы в конечном счете добьемся большей

экономической и политической безопасности, чем тратя средства на

охрану танкеров с нефтью.

Заметьте, что ни одно из этих мероприятий не требует дополнительных

расходов; речь идет только о смене приоритетов, которая могла бы привести

нас к устойчивому обществу.

Изучайте и применяйте на практике любые средства, позволяющие экономить в

Вашем собственном доме (разумеется, не приводящие к дискомфорту), улучшая

его теплоизоляцию и внедряя, где это только возможно, солнечные системы

отопления и горячего водоснабжения.

Наконец, чтобы защитить себя в будущем нефтяных кризисов,

постарайтесь поселиться в таком месте, где пользоваться автомобилем

необязательно.

Я выбрала эту тему, так как она кажется, на мой взгляд, очень

интересной. Я считаю, что за альтернативными источниками энергии стоит

будущее. А уже сейчас мы должны думать, какую планету мы оставим своим

потомкам. Я не думаю, чтобы людям на Земле было все равно в какой среде

будут расти их дети и внуки. Так объединим же усилия для борьбы за чистую

планету, за чистый воздух, за чистую воду!

План реферата.

1. Введение.

2. Альтернативные источники энергии:

1. солнечная энергия;

2. энергия воды:

а) гидроэнергия;

б) энергия приливов;

3. энергия ветра;

3. Что мы можем сделать?

Список используемой литературы:

1.П. Ревелль, Ч. Ревелль «Энергетические проблемы человечества»,

издательство «Мир»,1995

2. П. Ревелль, Ч. Ревелль «Загрязнение воды и воздуха», издательство «Мир»,

1995

3. Б. Небел «Наука об окружающей среде», издательство «Мир», 1993г

4. «Крымская солнечная электростанция», Внешторгиздат

5.Журнал «Наука и жизнь», издательство «Правда», 1989г.

Страницы: 1, 2


ИНТЕРЕСНОЕ



© 2009 Все права защищены.