бесплатно рефераты
 

Живлення рослин

p align="left">Центральним питанням мінерального живлення рослин є азотне живлення, що, як відомо, є найбільш лімітуючим продуктивність рослин. Азот разом з вуглецем, киснем і воднем утворить групу так званих елементів-органогенів. Кількість азоту в складі сухої речовини рослин невелика - вона звичайно коливається від 1 до 3 %. У середовищі, що оточує рослину, азот знаходиться в двох формах: у вигляді газоподібного азоту атмосфери, що складає 78,2 % повітря (за обсягом), і у виді різних органічних і неорганічних сполук, пригнічуюча частина яких зосереджена в ґрунті, морях і океанах. Понад 99% азоту ґрунту знаходиться в недоступній для рослин органічній формі.

Рослинам недоступний величезний запас газоподібного азоту, що знаходиться в повітрі, а з великої розманітності сполук азоту, що зустрічаються в ґрунті, вони можуть використовувати для харчування в основному тільки мінеральні форми цього елемента. Тому питання про перетворення з'єднань азоту в ґрунті під впливом мікроорганізмів залучає до себе велика увага. Більшість таких перетворень здійснюється шляхом нітрифікації, денітрифікації, амоніфікації, іммобілізації й азотфіксації.

2 Родучість ґрунту та фактори, що на неї впливають

Основним джерелом зольного живлення рослин є мінеральні елементи, що містяться в ґрунті, і азот. Багатство ґрунту мінеральними речовинами визначається специфічними особливостями материнської гірської породи і діяльністю мікроорганізмів.

Велику роль в утворенні самого ґрунту і нагромадженні у верхніх її обріях мінеральних елементів виконують у процесі своєї життєдіяльності і самі рослини. Поглинаючи своїми коренями мінеральні речовини, рослини піднімають їх у верхні шари ґрунту і тим самим збагачують останні.

Умови мінерального живлення в значній мірі залежать від типу ґрунту. Тому при виявленні потреб рослини в мінеральному добриві необхідно виходити як з видових особливостей організму, так і зі специфічних особливостей даного типу ґрунту.

У багаторічних дослідженнях вітчизняних ґрунтознавців постійно підкреслювалася думка, що правильне уявлення про ґрунтове живлення рослин можна одержати лише розглядаючи ці процеси як одне з ланок загальбіологічного круговороту речовин у природі.

В. Р. Вільямі, серед факторів, що забезпечують високий рівень родючості ґрунтів, висував на перше місце міцну мілкокомкову структуру.:

Характер взаємодії рослини і ґрунту в значної степені пов'язаний із властивим ґрунтам так званої поглинаючої здатності, під якою розуміють властивість ґрунту поглинати, зв'язувати різні хімічні сполуки. Основний внесок у навчання про поглинальну здатність вніс один з видатних представників вітчизняної науки про хімію ґрунту Костянтин Каетанович Гедройц. Для різних типів ґрунтів їм розроблена детальна характеристика поглинаючою здатністю, рівня і ємності поглинання, складу поглинених катіонів. Ці дослідження показують існування зв'язку між агрономічними властивостями ґрунту, рівнем її родючості і складом поглинених катіонів.

К. К. Гедройц розрізняв наступні види поглинання:

а) механічне, б) фізичне, в) фізико-хімічне, або обмінне, г) хімічне, д) біологічне.

Усі перераховані види поглинання здійснюються комплексом, що складається з цеолітної (вірніше -- цеолітоподібної, чи неорганічної) і гуматної (органічної) складових частин ґрунту. Весь комплекс перерахованих складових частин ґрунту Гедройц назвав ґрунтовим поглинаючим комплексом.

Найбільше значення має фізико-хімічне поглинання, сутність якого полягає в тому, що частина катіонів ґрунту, що містяться в її твердих частках, може бути виміняна на еквівалентну кількість катіонів, що знаходяться в ґрунтовому розчині або внесених у грунт у вигляді добрив. Ґрунт здатний поглинати не тільки катіони, але і деякі аніони, наприклад аніон фосфорної кислоти.11 Мусиенко Н.Н., Терневский А.И. Корневое питание растений: Учебное пособие. - К.: Высшая школа, 1989. - 203 с.

Поглинаюча здатність різних ґрунтів неоднакова. Вона, зокрема, залежить від ступеня роздробленості (дисперсності) органічних і мінеральних сполук, що містяться в ґрунті. Особливо велике значення має багатство ґрунту органічною речовиною, що володіє досить високою здатністю до поглинання (адсорбції) катіонів. Поглинаюча здатність ґрунтових часток стосовно того чи іншого катіона залежить також від ступеня насиченості цим катіоном колоїдів ґрунту; Чим нижче зміст катіона в поглинаючому комплексі ґрунту, тим з більшою швидкістю «силою цей катіон адсорбується ґрунтовими колоїдами.

Склад поглинених іонів у різних ґрунтів різний. У число їх входить і водень, витіснення якого може спричинити підвищення кислотності 'ґрунту. У поглиненому стані може знаходитися й алюміній, що, будучи витиснений, має на рослину токсичний вплив і т.д.

Звідси видно, що фізико-хімічна, чи обмінна, поглинаюча здатність ґрунту є одним з активних регуляторів взаємодії між добривом і ґрунтом. У силу цього поглинальна здатність ґрунту робить безсумнівний вплив на здатність рослин використовувати внесене в даний ґрунт добриво. Поглинаючий комплекс грунту відіграє важливу роль як регулятор реакції ґрунту. Від особливостей поглинаючого комплексу в значній ступені залежить і буферність ґрунту, тобто її здатність протистояти зміщенням реакції.

Було б неправильно однак, зв'язувати всю сукупність властивостей ґрунту, і першу чергу її родючість, із властивостями й особливостями її поглинаючого комплексу.

Одним з факторів, від яких залежить рівень родючості ґрунту і, отже, весь комплекс умов мінерального живлення рослин, є ґрунтова мікрофлора.

Виняткове значення для з'ясування ролі мікроорганізмів у створенні родючості ґрунту мають класичні дослідження засновника ґрунтової мікробіології Сергія Миколайовича Виноградського. Особливу роль зіграли роботи Виноградского по азотфіксуючих і бактеріях, що нітрифікують, "а також по сіро- і залізобактеріям. Ці дослідження є основою сучасних уявлень про кругообіг речовин у природі.

В даний час можна вважати встановленим, що в процесі еволюції відбувся добір визначених видів і асоціацій мікроорганізмів, у взаємодії з який здійснюється кореневе живлення вищих рослина. У цю группу мікроорганізмів входять різні гриби, бактерії, водорості.

Мікроорганізми - симбіонти концентруються в основному в зоні розташування кореневих систем вищих рослини (так називана ризосфера). Взаємодія між ними і рослинами здійснюється або шляхом «роздільного симбіотрофізму», тобто під час відсутності безпосереднього контакту між тканинами коренів і мікроорганізмів, або на основі «щирого симбіотрофізму» -- в умовах безпосередньої, інтимної асоціації партнерів.

Симбіози коренів вищих рослин із грибами звуться мікориз, симбіози з бактеріями -- бактеріориз. У залежності від форми симбіотрофізму розрізняють мікоризи екто - і ендотрофні. Перші розвиваються на поверхні коренів, другі проникають усередину тканини. Класичним прикладом бактеріотрофізму є взаємодія бобових рослин із клубеньковими бактеріями.

Дослідження мікробіологів, проведені в останні роки, значно розширили представлення про значення симбіотрофізму в процесах кореневого живлення рослин.

Важливе значення серед продуктів життєдіяльності бактерій мають вітаміни -- речовини, що володіють високою біологічної активністю. В даний час достовірно встановлено наявність у ґрунті вітамінів групи В (В1 В2, В6, В12), а також біотину, пантотенової, нікотинової, фолевої, параамінобензойної кислот і інших органічних кислот, мезоінозиту. Поряд з цими виявлені різні ферменти, а також ряд антибіотичних і токсичних речовин.

Кількість вітамінів і інших біологічно активних сполук залежить від загального .рівня родючості ґрунту, воно тим вище, чим вище вміст у ґрунті органічних речовин.

Отже, роль ґрунтових мікроорганізмів у житті. вищих рослин визначається не тільки їхньою здатністю мінералізовувати органічну речовину, але і здатністю синтезувати різноманітні органічні сполуки.

За характером їхні відношення до кисню ґрунтові мікроорганізми поділяються на дві групи:

а) анаеробні організми, життєдіяльність яких протікає без використання вільного кисню;

б) аеробна, здійснююча своя діяльність лише при обов'язковій участі молекулярного кисню. Ця група представлена численними видами бактерій, грибів і актиноміцетів.

Розкладання органічних речовин, результатом якого є утворення більш простих сполук, займає одне з центральних місць в життєдіяльності ґрунтової мікрофлори. Не менш суттєва роль належить цим процесам у створенні структури ґрунту.

Питання про хімічні шляхи, яким ці процеси здійснюються, складний, і не може вважатися дозволеним. Характер цих процесів залежить від наявних у ґрунті умов, хімічного складу рослинних залишків, фізіологічних властивостей мікроорганізмів і інших факторів.

У результаті всієї сукупності біологічних і хімічних процесів у ґрунті створюється складний комплекс органічних речовин, що поєднується терміном гумус.11 Мусиенко Н.Н., Терневский А.И. Корневое питание растений: Учебное пособие. - К.: Высшая школа, 1989. - 203 с.

Кінцевий склад гумусу в значній мірі залежить від хімічного складу підлягаючих розпаду органічних сполук, а також від фізіологічної природи мікроорганізмів, що беруть участь у перетворенні цих речовин.

Саме тому виявилося настільки складним рішення питання про хімічний склад тимінових речовин. В. Р. Вільямі відводив основну увагу, ульмійовій і гуминовій кислотам, що він розглядав як фактор, що стабілізує, що консервує органічну речовину ґрунту.

Таким чином, в утворенні ґрунтового гумусу беруть участь сполуки типу лігніну і дубильні речовини, а також білкові речовини і вуглеводи. Безперечно беруть участь в утворенні структурних одиниць гумусу і продукти життєдіяльності мікроорганізмів. Останні, як відомо, не тільки розкладають різні органічні речовини, але й забезпечують різноманітні синтези.

Значно поповнилися відомості щодо загальної ролі гумусу й органічних речовин ґрунту. Продукти розкладу органічних залишків не тільки збагачують ґрунт доступними сполуками фосфору й азоту і поповнюють запаси СО2 у самих нижніх шарах атмосфери, але і проявляють різноманітну стимулююче дію на рослину (активування процесу надходження речовин у клітину внаслідок підвищення її прониклості, посилення дихання і т.п.

Ці спостереження дозволять пояснити високу ефективність органомінеральних добрив. Вони відкривають також можливість практичного! використання в якості «добрива» гумінових речовин, які вилучаються з торфу, бурого вугілля, сланців і інших джерел. Перші досвіди показали, що малі дози гумінових речовин дають позитивний ефект навіть при застосуванні на багатих органічними речовинами чорноземних ґрунтах.

Розкладання азотовмісних сполук рослинної тканиною і гумусу проходить через ряд етапів. У результаті цих процесів у ґрунті нагромаджується аміак у виді солей різних органічних і неорганічних кислот. Амоніфікація азотистих сполук здійснюється різними мікроорганізмами, які належать як до аеробних, так і анаеробних форм.

Аміак, що утворився, піддається окислюванню, яке також здійснюється східчасто. На першому етапі окислення утвориться азотиста кислота, окислювання якої приводить до утворення азотної кислоти. Кожний з етапів цього процесу, що носить назву нітрифікація, відбувається за допомогою специфічних бактерій. У різних ґрунтах нітрифікація відбувається з дуже розрізною інтенсивністю; на хід процесу впливають умови температури, аерація, вологість і багато інших факторів. Утворившись нітрати служать одним з основних джерел азотного живлення зелених рослин.

Поряд з цим у ґрунті йдуть і процеси денитрифікації, що здійснюються спеціальною групою анаеробних мікроорганізмів, так званих денітрифікаторів Діяльність останніх акцентується при нестачі кисню, яка поєднується з надлишком нерозкладених рослинних залишків. Під впливом цих бактерій відбувається відновлення нітратного іона й утворення молекулярного азоту.

Крім денітрифікації, джерелом втрат нітратів являється вимивання з ґрунту, від чого більше всього страждають рослини на легких супіщаних ґрунтах.

Істотно позначаються процеси мінералізації органічних залишків на стані інших важливих елементів (сірка, фосфор та ін.)

У природі розклад органічних сполук, що містять сірку супроводжується виділенням сірководню; лише деяка частина вихідної сірки виділяється у формі меркаптанів. Утворення сірководню проходить також і під впливом специфічних анаеробних,що здатні відновлювати окислені сполуки сірки (солі сірчаної, сірнистої і сірнувастої кислот) за рахунок енергії, яка добувається ними шляхом окислювання деяких органічних речовин

Розкладання органічних речовин впливає і на баланс фосфорнокислих сполук ґрунту. Фосфорна кислота, яка відщеплюється в результаті діяльності мікроорганізмів вступає в сполуку з різними катіонами ґрунту в результаті чого утворяться малодоступні вищій рослині фосфорнокислі солі кальцію, заліза, магнію і т д.

Одним з основних факторів підвищення доступності фосфорнокислих солей є вуглекислота, що виділяється у процесі дихання коренів рослин і ґрунтових мікроорганізмів

Поряд з цим у ґрунті протікають зворотні процеси, які приводять до зменшення розчинності фосфатів.

Як показали дослідження Ф. В. Чирикова, доступність фосфорнокислих солей ґрунту різна для різних груп рослин.

Велика роль належить ґрунтовим мікроорганізмам в утворенні в ґрунті розчинних солей К, Fe, Si, Mg та ін. Цей процес здійснюється шляхом впливу продуктів життєдіяльності мікробів на каоліни, польові шпати й інші мінерали.

3 Становлення кореневого живлення

Чим харчується рослина? Це питання було, природно, одним з перших, з яким зштовхнулися фітофізіологи. Тому визначення сучасного стану кореневого живлення вимагає висвітлення його історичного становлення. При цьому інтерес представляє не послідовність дат і фактів, а зміна ідей, що з'являлися при аналізі малопомітних фактів і відкриттів.

Джерела зародження науки про кореневе живлення рослин просліджуються в багатовіковому досвіді вирощування сільськогосподарських культур, практичної діяльності людей.

У середині XVI в. Б. Палісі (1510-1590) установив, що в золі спаленої соломи містяться солі, що рослини беруть із ґрунту. Він стверджував, що зола служить добривом, тому що ґрунту повертаються ті речовини, що були в неї узяті.

Голландський учений Я. ван Гельмонт (1579-1644) уперше висловив думку, що в рослині відбувається переробка речовин, які сприймаються, що рослини харчуються за допомогою коренів.

Наприкінці XVIII - початку XIX вв. у харчуванні рослин домінувала так називана гумусова теорія А. Теера (1752-1828). Автор, правильно оцінюючи позитивне значення органічної речовини ґрунту, заперечував значення мінеральних елементів для рослин.

У середині XIX в. німецький хімік Ю. Либих (1803-1873) уперше сформулював мінеральну теорію живлення рослин. Цьому сприяла розробка методів аналітичної хімії, що відкрили широкі можливості пізнання суті будови речовини. З ім'ям Лібіха пов'язаний початок теоретичних і практичних досліджень по мінеральному живленню. Учений вирішив проблеми землеробства чисто хімічним шляхом. Зробивши сотні аналізів органічної і зольної частини різних рослин, він визначив, що в рослинах містяться 10 основних елементів: вуглець, кисень, водень, сірка, залізо, кальцій, магній, азот, калій і фосфор. Перші три елементи надходять з повітря і води; вони складають основну масу рослини. Інші складові частини (мінеральні) дає земля.

Ю. Лібіх наполягав на тому, що господарювання традиційними методами безперестану і невблаганно виснажує ґрунт. Зміною рослин на полях можна тільки вповільнити виснаження, але не запобігти його.

Учений вважав за необхідне повернення в ґрунт мінеральних речовин, вбачаючи в цьому основний закон агрохімії. Він думав, що в ґрунт повинні бути в першу чергу повернуті ті речовини, запаси яких найбільш виснажені. На думку Лібіха, найбільша увага приділялася фосфорним добривам, що споживаються рослиною для утворення насіння. Пропозиція Лібіха про застосування фосфорних добрив у вигляді мелених кісток худоби, особливо під зернові культури, з'явилося поштовхом до розвитку суперфосфатної промисловості на базі викопних фосфатів.

Ю. Лібіх переконливо довів неспроможність основних положень гумусової теорії. Він сформулював уявлення про те, що органічна речовина, яка дає початок гумусу, виникає з засвоюваних рослиною мінеральних речовин ґрунту. Велика заслуга Лібіха полягає в тому, що він зумів зрозуміти закони природи і намагався правильно їх застосовувати. З властивою йому образністю він писав: „природа говорить з нами на її власній мові, вона завжди відповідає на питання, і ці питання - досвіди". Книга Лібіха „Хімія в додатку до землеробства і фізіології рослин" (1840) зробила визначений позитивний вплив на розвиток агрохімії.

Однак Ю. Лібіх прийшов до неправильного висновку про те, що азот надходить у ґрунт з атмосферними опадами у виді аміаку і цієї кількості азоту досить для харчування рослин. Французький агрохімік і фізіолог Ж. Буссенго (1802-1887) і німецький учений Г. Гельригель (1831-1895) спростували помилкове уявлення Лібіха про азотне харчування рослин. Використовуючи вегетаційні досвіди, автори знайшли здатність бобових рослин засвоювати молекулярний азот атмосфери. У дослідженнях з рослиною соняшника було доведено, що весь необхідний азот рослина добуває з ґрунту. Іншою помилкою Лібіха було твердження, що добриво потрібно вводити в ґрунт у нерозчиненому чи малорозчинному вигляді. Йому здавалося, що в протилежному випадку внесені солі вимиються першим же дощем. Про могутність утримуючої здатності ґрунту він тоді ще не здогадувався, а тим часом рослини засвоюють тільки розчинні сполуки.11 Мусиенко Н.Н., Терневский А.И. Корневое питание растений: Учебное пособие. - К.: Высшая школа, 1989. - 203 с.

Російський ботанік М. С. Воронін (1838-1903) довів, що на коренях бобових з паренхімних тканин утворяться клубеньки, у клітках яких знаходяться клубенькові бактерії. Він уперше ретельно досліджував зрізи клубеньків на коренях люпину і знайшов у клітках тканини численних бактерій. П. А. Костичев (1845-1895) детально розробив питання про взаємодію між ґрунтом, рослинами й іншими її організмами. Дослідження Б. А. Келлера (1874-1945) з питань екології солончакових рослин у природі і шляхів їхніх пристосувань заслужено вважаються класичними. Крім галофітів, що накопичують солі у своїх органах, він установив тип галофітів, що виділяють надлишок солей. В. И. Вернадський (1863-1945) розробив основи біогеохімії. Він відзначав велике біогеохімічне значення ґрунту і вважав, що ґрунтові організми, будучи невід'ємною складовою частиною ґрунту, обумовлюють біохімічні процеси, що протікають у ній. В. И. Вернадський також заклав основи навчання про рідкі і розсіяні елементи, чи мікроелементах, у ґрунтах.

Значний інтерес до питань живлення рослин з'явився лише після того, як росіянин учений С. Н. Виноградський (1856-1953) встановив біологічну природу утворення в ґрунті нітратів, виділивши при цьому мікроорганізми-нітрифікатори. Йому належать відкриття анаеробної фіксації азоту і з'ясування ролі мікроорганізмів ґрунту в перетворенні гумусових речовин.

Важливими в теоретичному і практичному відношеннях для мінерального живлення рослин з'явилися роботи основоположника радянської школи агрохімії Д Н. Прянишникова (1865-1948). Він установив, що правильне використання мінеральних добрив є могутнім чинником регулювання фізіологічних процесів у рослин і формування врожаю. Він усебічно вивчав азотне живлення, довівши, що в слабкокислому середовищі нітрати поглинаються більш інтенсивно, ніж аміачні солі, а останні, навпаки, у нейтральному середовищі поглинаються більш енергійно. Дослідження Д Н. Прянишникова були покладені в основу заходів щодо хімізації сільського господарства.

Основні висновки про значення форм азоту в азотному харчуванні рослин, отримані Д Н. Прянишниковим і його учнями, зводяться до наступного.

1. При одночасній присутності в зовнішньому розчині нітратної й амонійної форм остання поглинається і споживається швидше.

2. Зовнішні і внутрішні оптимальні умови для харчування рослин аміаком і нітратами різні.

3. При порівнянні нітратів і амонію в оптимальних для кожного умовах вони фізіологічно рівноцінні.

4. Перевага нітратної чи амонійної форми залежить від реакції зовнішнього середовища, співвідношення катіонів, особливо Са2+ і К+, і змісту запасних вуглеводів у насінні і проростках.

Великий внесок у пізнання закономірностей кореневого живлення внесли роботи Д А. Сабініна. У його працях роль коренів у процесах росту рослин на всіх етапах онтогенезу освітлена в декількох напрямках.

1. Проникність плазми і поглинання кореневими системами води і розчинених у ній елементів мінерального живлення.

2. Роль коренів у водяному харчуванні.

3. Роль коренів у процесах мінерального харчування і їх метаболічна активність.

4. Кругообіг елементів мінерального живлення і їхній вплив на ріст і формоутворення рослин.

Страницы: 1, 2, 3


ИНТЕРЕСНОЕ



© 2009 Все права защищены.