бесплатно рефераты
 

Влияние пирроксана на активность карбоксипептидазы н и фмфс-ингибируемой карбоксипептидазы в нервной ткани крыс

Влияние пирроксана на активность карбоксипептидазы н и фмфс-ингибируемой карбоксипептидазы в нервной ткани крыс

26

Федеральное агентство по образованию РФ

Пензенский государственный педагогический университет

им. В.Г. Белинского

Факультет Естественно-географический

Кафедра Биохимии

КУРСОВАЯ РАБОТА НА ТЕМУ:

«ВЛИЯНИЕ ПИРРОКСАНА НА АКТИВНОСТЬ КАРБОКСИПЕПТИДАЗЫ Н И ФМФС-ИНГИБИРУЕМОЙ КАРБОКСИПЕПТИДАЗЫ В НЕРВНОЙ ТКАНИ КРЫС»

Исполнитель: студентка группы

БХ-41 специальности «Биохимия» Даркина Ю.Ф.

Руководитель: доцент к.б.н.

Сметанин В.А.

Пенза - 2007

Содержание

Стр.

Список сокращений

Введение

1. Обзор литературы

1.1. Физико-химические свойства ферментов

1.1.1. Карбоксипептидаза Н

1.1.2. Карбоксипептидаза М

1.1.3. Фенилметилсульфонилфторид-ингибируемая карбоксипептидаза

1.2. Адреноблокаторы

1.3. Адренергическая и пептидергическая системы

2. Материалы и методы исследования

2.1. Материал исследования

2.2. Методы определения карбоксипептидазо-В-подобной активности

2.2.1. Определение активности карбоксипептидазы Н

2.3. Методика определения белка

2.4. Статистическая обработка результатов исследования

3. Результаты и обсуждение

Выводы

Библиографический список

СПИСОК СОКРАЩЕНИЙ

АКТГ - адренокортикотропный гормон

ГПЯК - гуанидинопропилянтарная кислота

ГЭМЯК - гуанидиноэтилмеркаптоянтарная кислота

ДОФА - диоксифенилаланин

КОМТ - катехолортометилтрансфераза

КПА - карбоксипептидаза А

КПВ - карбоксипептидаза В

КПН - карбоксипептидаза Н

КПM - карбоксипептидаза M

КПN - карбоксипептидаза N

ЛКПВ - лизосомальная карбоксипептидаза В

МАО - моноаминооксидаза

ПХМБ - п-хлормеркурийбензоат

ПХМФС - п-хлормеркурийфенилсульфонат

ФМСФ - фенилметилсульфонилфторид

ФМСФ-КП - фенилметилсульфонилфторид-ингибируемая

карбоксипептидаза

цАМФ - циклический аденозинмонофосфата

ЦНС - центральная нервная система

ЭДТА - этилендиаминтетраацетат натрия

ВВЕДЕНИЕ

Современная медицина располагает значительным рядом "экзогенных" синтетических адренопозитивных и адреноблокирующих препаратов, действие которых связано с влиянием на адренергические процессы. По химической структуре эти средства родственны адреналину и норадреналину, и их основные фармакологические свойства связаны в первую очередь с взаимодействием со специфическими адренергическими рецепторами эффекторных клеток. В частности б-адреноблокаторы, к числу которых относиться пирроксан.

б-адреноблокаторы оказывают прессорное действие, которое связано с действием вещества на рецепторы, но наличие побочных эффектов, таких как, артериальная гипотония, брадикардия, трудно объяснить только влиянием этого препарата на рецепторы. Возможно, часть эффектов опосредуется пептидергической системой, т.к. изменение адренергической системы вызывает изменение уровня регулярных пептидов: вазопрессина, ангеотензина и саматотропина.

В образовании активных форм регуляторных пептидов участвуют карбоксипептидазы, в частности карбоксипептидаза Н и ФМСФ-ингибируемая карбоксипептидаза.

Целью настоящей работы является исследование механизмов взаимодействия адренергической и пептидергической системами в нервной ткани крыс.

В соответствии с поставленной целью решали следующие задачи:

а) исследовать активность карбоксипептидаз Н и ФМСФ-ингибируемой карбоксипептидазы в нервной ткани крыс;

б) изучить влияние пироксена на активность основных карбоксипептидаз.

1. Обзор литературы

1.1. Физико-химические свойства ферментов

В нервной ткани, как и в большинстве органов и тканей животных, имеется сложная система протеолиза, включающая различные по внутриклеточной локализации и специфичности действия протеолитические ферменты. В настоящее время внутриклеточные ферменты разделяют на две группы в соответствии с локализацией в клетке и их функциональной ролью [2].

Одной из функций пептидгидролаз является участие во внутриклеточном процессинге белков и пептидов - в превращении неактивных предшественников в соответствующие активные продукты. Пептидгидролазы (пептидазы) - ферменты, катализирующие гидролиз пептидных (амидных) связей. Их подразделяют на Экзопептидазы: аминопептидазы, карбоксипептидазы, дипептидазы, отщепляющие дипептиды с N- или С-конца полипептидной цепи; и эндопептидазы [2].

В настоящее время в тканях человека и животных обнаружено более десяти КП нелизосомальной локализации, по меньшей мере четыре из них присутствуют в мозге.

1.1.1. Карбоксипептидаза Н (КФ 3.4.17.10)

КПH (КПE, энкефалинконвертаза) впервые выделена и охарактеризована Fricker и Snyder из хромаффинных гранул надпочечников быка, как фермент, образующий энкефалины из их предшественников [20]. Позднее фермент был выделен и очищен из мозга [9], гипофиза, островков Лангерганса поджелудочной железы. Фермент, выделенный из разных тканей разных видов животных, имеет очень близкие физико-химические и каталитические свойства.

КПH является одноцепочечным гликопротеином и существует как в растворимой, так и в связанной с мембранами формах [9]. Существуют две формы мембраносвязанной КПH, отличающиеся по прочности связывания с мембранами. Одна из этих форм экстрагируется из мембран при pH 5,6 1M раствором NaCl, вторая - только при совместном воздействии 1M NaCl и 1% Тритона X-100.

Фермент синтезируется в виде неактивного зимогена с Mr 75000, который превращается в активную форму под действием трипсиноподобных ферментов в ходе созревания секреторных везикул. Сначала образуется неактивная форма с Mr 65000, которая превращается в активные формы с Mr 52000 - 53000 и 55000 - 57000 [19]. Отличия в Mr этих форм не связаны с различиями в степени гликозилирования. Форма с Mr 55000 - 57000 отличается от формы с Mr 52000 - 53000 наличием N-концевого сигнального пептида. Обе формы существуют и в растворимом, и в связанном с мембранами виде [19]. Активность растворимой формы фермента в расчёте на молекулу фермента выше, чем мембраносвязанной. Соотношение между растворимой и мембраносвязанной формами изменяется по мере созревания секреторных везикул. За связывание фермента с мембранами отвечает C-концевая амфифильная последовательность, которая присутствует только у мембраносвязанной формы. Она состоит из 21 остатка чередующихся гидрофобных и гидрофильных аминокислот. В аминокислотной последовательности КПH обнаружен также Ca2+-связывающий участок, но ионы Ca2+ влияют не на активность, а на стабильность, агрегацию и способность к связыванию с мембранами.

КПН проявляет максимальную активность при рН 5,5-6,0, что соответствует рН внутри секреторных везикул и является тиолзависимым металлоферментом, в активном центре которого находится ион Zn2+. Данный фермент сильно (примерно в 5-10 раз) активируется ионами Со2+, в меньшей степени (в 2-3 раза) - ионами Ni2+, ингибируется ионами Сd2+ и Cu2+, хелатирующими агентами: ЭДТА, о-фенантролином, при применении которых активность фермента восстанавливается добавлением ионов Zn2+. Фермент также ингибируется реагентами на сульфгидрильные группы: ПХМФС, N-этилмалеимидом и органическими кислотами. Наиболее эффективными ингибиторами являются ГЭМЯК и ГПЯК с Кi 8,8 и 7,5нМ соответственно.

ФМСФ, 2-меркаптоэтанол, а также ионы Мg2+ и Mn2+ не влияют на активность КПН [20].

КПH отщепляет остатки аргинина и лизина с C-конца синтетических и природных пептидов. Скорость отщепления остатков аргинина в несколько раз больше, чем остатков лизина. Остатки гистидина отщепляются с очень маленькой скоростью, по сравнению с остатками лизина. Остатки ароматических аминокислот не отщепляются. Скорость расщепления субстратов зависит от предшествующего аминокислотного остатка. Скорость расщепления дансил-фен-ала-арг на порядок выше, чем скорость расщепления дансил-фен-гли-арг, дансил-фен-лей-арг и дансил-фен-иле-арг.

Локализация фермента в целом соответствует распределению биологически активных пептидов и их предшественников [14]. Наиболее высокая активность КПH обнаружена в аденогипофизе, хромаффинных гранулах надпочечников [20] и островках Лангерганса поджелудочной железы. Более низкая (примерно на порядок) активность фермента обнаруживается в задней доле гипофиза, гипоталамусе, стриатуме, гиппокампе, среднем мозге, коре больших полушарий [17]. Наиболее низкая активность КПH обнаружена в стволовой части головного мозга, спинном мозге, легких, сердце, желудочно-кишечном тракте, печени и почках. Установлено, что КПH ассоциирована со структурными элементами ЭПР, комплекса Гольджи и секреторными везикулами, где протекает процессинг предшественников различных биологически активных пептидов. Фермент обнаружен в секреторных везикулах, содержащих энкефалины, атриальный натрийуретический фактор, глюкагон, инсулин, АКТГ, пролактин, вещество P, вазопрессин и окситоцин и другие регуляторные пептиды. Различные ингибиторы и активаторы секреции координировано регулируют выделение КПH и энкефалинов, АКТГ, пролактина, вазопрессина и инсулина [21].

Физико-химические свойства, субстратная специфичность, тканевая, клеточная и субклеточная локализация, особенности изменения активности фермента при различных фармакологических воздействиях на культуры клеток, нарушение синтеза нейропептидов у мышей с дефектной КПН свидетельствуют о том, что исследуемый фермент вовлекается в процессинг многих биологически активных пептидов, таких как энкефалины, АКТГ, -эндорфин, вазопрессин, окситоцин, нейротензин, меланоцитстимулирующий гормон, вещество Р и др.

Показано, что КПН вовлекается в определение агрессивности [15], предрасположенности к потреблению этанола, в развитие физической зависимости от этанола [15], в ответ на различные стрессирующие воздействия [15], введение стероидных гормонов in vivo, имеются данные о наличии половых различий в активности фермента.

1.1.2. Карбоксипептидаза М (КФ 3.4.17.2)

Карбоксипептидаза M (КПМ) представляет собой мембраносвязанный одноцепочечный гликопротеин с молекулярной массой 62 кДа, заякоренный в плазматической мембране при помощи остатка гликозил-фосфатидилинозитола. Обработка трипсином и фосфолипазой C приводит к удалению гидрофобного хвоста и высвобождению фермента из клеточной мембраны [18].

Высвобождение КПM из плазматической мембраны происходит и in vivo, поскольку фермент обнаружен в различных биологических жидкостях, в частности в моче и амниотической жидкости.

При химическом дегликозилировании образуется полипептид с Mr 48000, который состоит из 439 аминокислотных остатков. Аминокислотная последовательность фермента на 41% идентична КПN и КПH, на 15% - КПB и КПA. Многие остатки активного центра идентичны таковым КПA и КПB, но перекрёстной реакции с антисыворотками к другим КП фермент не даёт.

Фермент отщепляет остатки только основных аминокислот, при отсутствии ионов Co2+ предпочтительней отщепляет аргинин, а в присутствии Co2+ - лизин. Эстеразная активность фермента значительно выше, чем пептидазная. КПM проявляет максимальную активность при pH 7,0, ионы Co2+ повышают активность фермента в 1,5-2 раза, причём степень активации возрастает при снижении pH. Активность КПM подавляется ионами Cd2+, о-фенантролином, МГТК и ГЭМЯК.

ПХМФС, HgCl2, дитиотреитол, ФМСФ, апротинин, каптоприл и фосфорамидон не влияют на активность фермента.

Фермент локализован преимущественно в плаценте, почках, эндотелиальных клетках кровеносных сосудов, обнаружен в периферической нервной системе и головном мозге.

КПМ in vitro отщепляет С-концевые остатки основных аминокислот от динорфина А 1-13, мет-энкефалин-арг6, мет-энкефалин-лиз6, лей-энкефалин-арг6, брадикинина [1], фактора роста эпидермиса, образует интактные кинины и анафилотоксины С3а, С4а, С5а. Предполагают, что фермент может инактивировать или модулировать пептидные гормоны перед или после взаимодействия последних с рецепторами.

Стоит отметить, что если физико-химические свойства КПН, ФМСФ-КП и КПМ изучены достаточно хорошо, то биологическая роль данных ферментов, в том числе их участие в различных физиологических и патологических процессах исследованы значительно хуже. Поэтому представляется весьма интересным изучение их активности при различных процессах в организме, в том числе при острой алкогольной интоксикации.

1.1.3. Фенилметилсульфонилфторид-ингибируемая карбоксипептидаза

В 1995г. Вернигора и соавт. обнаружили в растворимой фракции серого вещества головного мозга кошки основную КП, активность которой полностью подавляется ФМСФ [13].

Фермент, по результатам гель-фильтрации, имеет Мr 100000; проявляет максимальную активность при рН 6,0-6,5, но сохраняет 40-45% активности при рН 5,5. Фермент полностью ингибировался ФМСФ и ПХМБ, примерно на 40% ингибировался иодацетамидом. ЭДТА, 2-меркаптоэтанол, N-этилмалеимид, ионы Co2+ и ГЭМЯК не влияли на его активность. Фермент почти в 2 раза активировался 50мМ NaCl, несколько слабее - NaBr, KCl и KJ. Повышение концентрации NaCl не приводило к увеличению степени активации фермента [13].

Согласно данным тонкослойной хроматографии частично очищенный фермент отщеплял аргинин от лей5-энкефалин-арг6 и дансил-фен-лей-арг с образованием лей5-энкефалин и дансил-фен-лей соответственно. Более глубокого гидролиза субстратов не наблюдалось. Фермент также не расщеплял субстрат КПA - карбобензокси-гли-лей [13]. Таким образом, по субстратной специфичности ФМСФ-ингибируемая карбоксипептидаза сходна с ЛКПB. Вместе с тем физико-химические свойства фермента (ингибирование ФМСФ, нечувствительность к ЭДТА, ГЭМЯК и ионам Co2+) отличают его от ЛКПB [1]. Ингибирование фермента ФМСФ позволяет предположить, что он является сериновой карбоксипептидазой. В тканях млекопитающих обнаружены две сериновые карбоксипептидазы - ЛКПА (КФ 3.4.16.1, катепсин A, лизосомальная карбоксипептидаза L) и карбоксипептидаза C (КФ 3.4.12.4, ангиотензиназа C, пролилкарбоксипептидаза). Но ФМСФ-ингибируемая карбоксипептидаза отличатся от карбоксипептидазы C по молекулярной массе и субстратной специфичности.

В то же время, ФМСФ-ингибируемая карбоксипептидаза имеет сходные с ЛКПA молекулярную массу, оптимум pH, ингибиторный профиль, но отличается от последней по субстратной специфичности и тканевой локализации.

Активность ФМСФ-ингибируемой КП обнаружена во всех отделах мозга и в большинстве тканей, за исключением почек, в которых присутствуют лишь следы ее активности. Наибольшая активность фермента отмечается в надпочечниках, примерно на 40% ниже - в гипофизе, в печени и селезенке его активность составляет примерно 30-35% от активности в гипофизе. В семенниках активность ФМСФ-ингибируемой КП примерно в 2,5 раза ниже, чем в надпочечниках. В отделах мозга активность фермента примерно в 2-3 раза ниже, чем в гипофизе. Наиболее высокая активность ФМСФ-ингибируемой КП в мозге обнаруживается в обонятельных луковицах, наиболее низкая - в четверохолмии и гиппокампе [10].

Обращает на себя внимание тот факт, что сродство обнаруженного фермента к дансил-фен-лей-арг (Кm гидролиза - 48 мкМ), выше, чем сродство КПН (Кm гидролиза - 96 мкМ). Это позволяет предположить, что энкефалин-лей5-арг6 может быть лучшим субстратом для ФМСФ-ингибируемой КП, чем для КПН. ФМСФ-КП проявляет существенную активность при значениях рН, соответствующих таковому внутри секреторных везикул. Таким образом, возможно, что обнаруженный фермент вовлекается в процессинг нейропептидов, в частности энкефалин-лей5-арг6, тем более, что в литературе имеются данные о том, что региональное распределение КПН и энкефалинов не всегда соответствует друг другу [16].

1.2. Адреноблокаторы

Лекарственные средства, влияющие на функции разных адренорецепторов, имеют в настоящее время широкое применение в различных областях медицины.

Адренергические рецепторы, для которых природными, т. е. эндогенными, лигандами являются норадреналин и адреналин, первоначально обозначали в общем виде как адренорецепторы. Однако изучение особенностей действия этих эндогенных соединений и их синтетических аналогов и производных привело к заключению о неоднородности адренорецепторов, наличии их подгрупп, разных по локализации и функциональной значимости. Идентификация этих подгрупп имеет важное фармакологическое и клиническое значение. Влияние на разные адренорецепторы определяет не только особенности фармакологического действия различных адренергических и антиадренергических веществ, но также показания и противопоказания к их практическому использованию. Так, например, из в-адреноблокаторов анаприлин (пропранолол) характеризуется антиишемическим, антиаритмическим и антигипертензивным действием может сопровождаться побочными эффектами (бронхоконстрикторным; повышением сопротивления периферических сосудов).

Адренорецепторы бывают четырех видов: альфа-адренорецепторы (2 типа - б1 и б2) и бета-адренорецепторы (в1 и в2). Смысл разделения: б - рецепторы блокируются введением алкалоидов спорыньи, а в-рецепторы - не блокируются. Рецепторы делятся также на пресинаптические и постсинаптические. Постсинаптические б-адренорецепторы, как правило, вызывают активацию (но для гладких мышц кишечника - наоборот, расслабление). Через постсинаптические в-рецепторы оказывается в основном тормозное влияние (но для сердца - исключение - возбуждающий эффект). Пресинаптические б2-адренорецепторы уменьшают синтез и выброс медиаторов, а пресинаптические в2-адренорецепторы увеличивают и то и другое.

В результате было создано большое количество лекарственных средств, как адренопозитивных, т. е. стимулирующих адренергические процессы, так и адренонегативных - антиадренергических веществ.

1. Усиливающие адренэргическую передачу нервных импульсов.

1.1. Адреномиметики прямого действия.

1.1.1. б,в-адреномиметики: адреналин (все адренорецепторы).

1.1.2. б-адреномиметики: норадреналин (б1, б2, частично - и в), мезатон (б1-рецепторы), нафтизин (б2-рецепторы на периферии), галазолин (б2-рецепторы на периферии), клонидин (клофелин) (б2-рецепторы ЦНС), гуанфацин (б2-рецепторы ЦНС).

1.1.3. в-адреномиметики: изадрин (в1 и в2-рецепторы), добутамин (в1-рецепторы), дофамин (в1, частично - б), орципреналин, фенотерол (в2-рецепторы), салбутамол.

1.2. Симпатомиметики непрямого действия: эфедрин, фенамин, тирамин, кокаин,а также некоторые трициклические антидепрессанты.

2. Ослабляющие адренэргические эффекты.

2.1. Адренолитики прямого действия.

2.1.1. б,в-адренолитики: лабеталол.

2.1.2. б-адренолитики: фентоламин, пирроксан, дигидроэрготамин, дигидроэрготоксин: б1 и б2, празозин (только б1).

2.1.3. в-блокаторы: пропранолол, окспреналол, пиндолол - в1 и в2, талинолол - кардиоселективные в1, метопролол и атенолол - в1.

2.2. Адренолитики непрямого действия (симпатолитики): резерпин, октадин, ормид, метил-ДОФА.

б1,2-адреноблокаторы представляют собой дигидрированные алкалоиды спорыньи. Сюда относят фентоламин, пирроксан, дигидроэрготамин, дигидроэрготоксин.

Данные лекарственные средства применяют: а) для лечения расстройств переферического кровообращения; б) лечение трофических язв, ран, отморожений; в) купирование гипертонических кризов (фентоламин внутривенно); г) диагностика и лечение феохромоцитом (опухоль мозгового слоя надпочечников, адреналин выходит в кровь и состояние подобно гипертоническим кризам); д) лечение мигреней (сильная головная боль с рвотой, связанная с повышением амплитуды пульсации сосудов головного мозга; е) для лечения артериальной гипертензии используются вещества, которые избирательно блокируют постсинаптические альфа1-адренорецепторы (они снимают влияние симпатических нервов на сосуды и сосуды расширяются).

Механизм антидепрессивного действия этих препаратов неясен. Вначале было предположено, что оно обусловлено периферическим адренонегативным эффектом, в результате которого по механизмам обратной связи повышается содержание норадреналина в мозге [Бару А. М., 1970; Нуллер Ю. Л., 1970]. За последние годы появились данные о влиянии антидепрессантов на чувствительность норадренергических рецепторов. Так, антидепрессивное действие миансерина частично связывают с торможением а2-адренорецепторов.

1.3. Адренергическая и пептидергическая системы

Страницы: 1, 2


ИНТЕРЕСНОЕ



© 2009 Все права защищены.