бесплатно рефераты
 

Теория эволюции

борьбе за существование не всегда выживают наиболее сильные и самые ловкие: черепаха и медлительна, и неуклюжа, но прочный панцирь - надежная защита от хищников; многие паразиты с упрощенным строением поселяются в организме животного или растения, к которому они хорошо приспособлены. Параллельное существование как высших, так и низших форм органической жизни получило логическое объяснение в теории Дарвина -- как результат действия естественного отбора, сохраняющего наиболее приспособленных: не пренебрегая в ряде случаев примитивностью организации, природа достигает биологического прогресса (чаще наблюдается усложнение организмов, гораздо реже -- упрощение).

4. Возражения против теории эволюции Дарвина.

Время, когда в центре внимания были люди, претендовавшие, чтобы всеобщая теория эволюции признавалась как факт - далеко в прошлом. Если говорить научно, эта теория не может быть классифицирована как факт. Она скорее имеет отношение к истории и не является предметом экспериментального исследования.

Теоретически, процесс всеобщей эволюции мог бы быть воспроизведен экспериментально, на самом же деле это не так. Хотя в лабораториях и удалось продемонстрировать видообразование, никаких результатов помимо видообразования достичь не удалось. Чарльз Дарвин совершенно четко обрисовал различия между видообразованием и всеобщей эволюцией и отметил, что всеобщая теория эволюции обязательно подтвердится ископаемыми материалами.

В "Происхождении видов" Дарвин отмечал, что без соответствующих ископаемых данных, (которые в то время не существовали) его всеобщая теория не будет иметь никокого веса. Он и другие цепко хватались за надежду, что при обнаружении ископаемых материалов откроются все промежуточныхе формы, необходимые для подтверждения его заключений. Тем не менее на сегодняшний день при более чем 100 000 видах, представленных среди ископаемых, недостаток промежуточных форм еще более велик, нежели во времена Дарвина.

Помимо недостатка ископаемых данных, еще менее обоснованной теорию всеобщей эволюции сделали находки современных ученых.

Развитие биологии выдвинуло значительные затруднения к пониманию естественной системы как изображения филогенеза. Критика этого воззрения имела два совершенно различных источника: с одной стороны, представители экспериментальной биологии и натурфилософы критиковали значение естественной системы, понимаемой как филогения, не с точки зрения формы системы, а оставаясь на признании иерархической системы.

Наиболее ярко эта критика выражена у Дриша и Радля, которые указывают на следующие три слабые стороны отождествления системы с филогенией:

о чисто логическое возражение: система не есть учение о становлении и совпадение системы с филогенией вовсе не обязательно;

о оценочное с точки зрения достижения науки: систематика, превратившись в чисто идиографическую дисциплину, перестает быть номотетической и с точки зрения естествознания деградируется в ранге; поэтому непонятно, как могут дарвинисты искать в систематике какой-то высокий научный смысл;

о наиболее существенное возражение: данные экспериментальной эмбриологии выдвинули корреляцию в таком смысле (можно назвать его геометрическим в противоположность физиологическому и филогенетическому), при котором невозможно сводить субординацию признаков к простой аддитивности при эволюции. Этот третий довод вырос на чисто эмпирической почве (сознательно формулирован он был главным образом Радлем), но факты в его пользу заимствованы не из области собственно систематики.[16, 118].

Другой источник критики является уже чисто систематическим (понимаемой, конечно, в широком смысле слова). Эти доводы основаны на том, что по мере развития знаний получало все большее и большее ограничение то положение, которое руководило и самим Дарвином и первоначальными дарвинистами, а именно: сходство есть доказательство и мерило родства. Суммируя в кратких чертах главнейшие трудности, укажу на следующие категории данных:

Можно было бы ожидать, что так как (при иерархическом понимании системы) дивергенция низших таксономических единиц произошла очень недавно, то всегда легче построить филогению мелких таксономических групп: на самом деле именно в этой области филогения, построенная на изучении систематики, совершенно не удавалась, что признает даже Плате; напротив, небольшие группы всегда легче классифицируются в виде решеток (неправильно называемых периодическими системами), чему примеры мы видим еще у Копа, Шимкевича, Виттенберга; с этим же стоит в связи и явление гомологических рядов, особенно подчеркнутое Вавиловым.[4, 62].

Постоянные перестройки системы путем обнаружения "неестественности" групп, принимаемых ранее за естественные с филогенетической точки зрения: примеры этого можно привести из любого класса и типа животного и растительного мира: укажу, например, пластинчатожаберных моллюсков, которые делились то по числу мускулов, то по строению жабр: потом и этот последний признак был принят неестественным. У современных систематиков наблюдается уже некоторая усталость в отыскивании "естественных" подразделений и потому многими сознательно вводится понятие ступени, лишенной филогенетического смысла. Опять в качестве одного из чрезвычайно многочисленных примеров приведу, что в новейшей системе рыб признаются гетерогенными, провизорными образованиями такие таксономические единицы, как рыбы вообще, Chondrichthyes, Crossopterygii, Clupeiformes, Esociformes.[3, 455-461].

Преобладание параллельного развития в хорошо изученных палеонтологических рядах, почему некоторые палеонтологи (например, А.П. Павлов) сознательно считают, что родом нельзя называть совокупность видов, происходящих из одного корня, а просто лишь морфологически близкие виды, независимо от их происхождения; большинство палеонтологов придерживаются другой точки зрения (виднейший выразитель-Абель) и считают, что если доказана полифилетичность рода той или иной таксономической единицы, то такая группа теряет право на существование.

Все эти данные привели уже к ревизионистским попыткам. Если перечислять эти попытки не в хронологической последовательности их появления, а в меру их идейной близости к господствующим взглядам, то на первом плане надо поставить взгляды Козо-Полянского (1922), считающего, что филогенетическая и естественная системы, по существу, глубоко различны и что только первая интересна. Он заменяет выражение: "сходство есть мерило родства" - несколько иным: "гомологическое сходство есть доказательство родства". Различие здесь чисто количественное, а не качественное.

Все филогенетики под сходством просто подразумевали филогенетическое сходство и опускали прилагательное только потому, что по распространенному мнению гомологичные (тождественные с гомофилическими) сходства составляют большую часть сходств вообще и что поэтому система, построенная на основании гомологических сходств, не будет существенно отличаться от системы, построенной на основании всех сходств, т. е. понятия естественной и филогенетической системы совпадают. По Козо-Полянскому же (и в этом заключается его значительный шаг вперед), гомологические сходства составляют незначительную часть сходств вообще и потому система, построенная на сходствах вообще (естественная), радикально отличается от системы, построенной на гомологических сходствах (филогенетической). Таким образом, вое дело сводится к тому, можем ли мы найти критерии гомологического сходства. Я тщательно искал такие критерии в книге Козо-Полянского, которому, очевидно, осталась неизвестной вся критическая работа над понятием гомологии; что такое гомология в настоящее время сказать трудно: одно можно утверждать с несомненностью, что гомология не тождественна с гомофилией. Взгляды Козо-Полянското постоянно приводят его к противоречиям, но за недостатком места я не могу вдаваться в подробную критику.

Другое направление, которое можно было бы назвать строго комбинационным, склонно рассматривать всю систему под углом зрения менделевского анализа. Критики этого взгляда мне придется коснуться позже; во всяком случае, с точки зрения представителей этого направления (главный выразитель - Лотси), система приобретает такую форму, которая уже не имеет филогенетического значения.[3, 455-461].

5. Концепция коэволюции и ее суть. Что внесли экологические исследования в ее создание.

Коэволюция - эволюция взаимодействия организмов разных видов, не обменивающихся генетической информацией, но тесно связанных экологически (например, хищник - жертва, паразит - хозяин).[7, 134].

Идея коэволюции вошла в моду, и на русском языке есть уже, по крайней мере, две книги, ей посвященные. Первоначально термин понадобился для обозначения взаимного приспособления биологических видов. Затем стало ясно, что он удачно выражает более широкий круг явлений -- соразвитие взаимодействующих элементов единой системы, естественно развивающейся (коль скоро развиваются ее части) и сохраняющей при этом свою целостность по крайней мере так долго, как необходимо для постановки вопроса о коэволюции в ней. Коэволюционирующие элементы, конечно, сами являются системами и именно в этом качестве рассматриваются при изучении их соразвития.

Еще в «Основах экологии» Ю. Одума было выделено 9 типов взаимодействия популяций, и все 9 с большими или меньшими основаниями могут рассматриваться в качестве разновидностей коэволюции. Наиболее интересные, «невырожденные», типы коэволюции предполагают своего рода сближение двух взаимосвязанных эволюционирующих систем, но не движение к одному, общему образу (конвергенция), а взаимную адаптацию, когда изменение, произошедшее в одной из систем, инициирует такое изменение в другой, которое не приводит к нежелательным или, тем более, неприемлемым для первой системы последствиям. Для таких случаев обязательна некая (относительная) симметрия, равнозначность, «равноположенность» коэволюционирующих систем. О том, что такое нежелательность, неприемлемость, вряд ли стоит рассуждать «в общем виде», проще определять это применительно к конкретным случаям.

Таким образом, если рассматривать развитие биосферы прежде всего как эволюцию ее биотической подсистемы (биоты), то разрыв в скоростях биоэволюции и техноэволюции обусловливает бессодержательность и внутреннюю противоречивость постановки вопроса о коэволюции биосферы и человека. Может быть, вывод изменится, если рассматривать развитие на относительно малых временных промежутках, так что процесс видообразования останется за пределами внимания? Нет, не изменится. Для обоснования обратимся к системно-кибернетическим представлениям о биосфере и к теории биотической регуляции окружающей среды.[7,135].

Развитие биосферы за период человеческой истории не раз становилось объектом научного анализа. Главный вывод не является новым или неожиданным, хотя большинством все еще не осознается в полной мере: вся деятельность человека после того, как он овладел огнем, перешел от собирательства и охоты к земледелию и скотоводству, для биосферы -- возмущение.

Реакция любой системы на возмущение зависит от его величины, от того, ниже оно допустимого порога воздействия на систему или выше. В первом случае с помощью присущих ей компенсационных механизмов система подавляет негативные последствия, а обычно и сам источник возмущения, но во втором -- она начинает разрушаться, деградировать. Однако при этом до определенного момента система может сохранять способность к самовосстановлению, а затем развиваются необратимые процессы, которые уничтожают либо принципиально изменяют систему -- она перерождается, переходит в иное качество.

Согласно теории биотической регуляции, с момента своего возникновения биота не только адаптировалась к окружающей среде, но и оказывала на нее мощное формирующее влияние, возраставшее по мере развития биоты. Под воздействием биоты формировалась регулируемая окружающая среда, одновременно развивались соответствующие регулирующие механизмы самой биоты. В результате образовалась высокоорганизованная система -- биосфера, в которой посредством надлежащей подстройки потоков биогенов (веществ, участвующих в функционировании биоты) обеспечивается беспрецедентно высокая точность регулирования всех параметров, существенных для биоты (физических и химических характеристик климата, атмосферы, почвы, поверхностных вод суши и Мирового океана), в широких пределах вариации возмущений.

6. Соотношение между общей теорией эволюции и концепцией коэволюции.

Изучение проблем коэволюции открывает новое и, возможно, важнейшее направление фундаментальных исследований. Часто говорят, что в отличие от века пара, каким был век XIX, и века ХХ, который был веком электричества и атомной энергии, наступающий век будет веком гуманитарных знаний. Я принимаю такую формулировку, ибо наука об обеспечении коэволюции и есть та комплексная дисциплина, которая должна дать людям знание о том, что необходимо для продолжения существования человечества на Земле и дальнейшего развития его цивилизации.

В настоящее время изучение необходимых условий коэволюции продвинулось в целом ряде конкретных направлений. Так, например, изучение физико-химических особенностей атмосферы позволило установить влияние фреонов на структуру озонового слоя и даже принять важнейшее решение о переориентации холодильной промышленности на другой тип хладонов (см. Монреальский протокол ООН). Постепенно на ряде частных примеров показана огромная стабилизирующая роль биоты в целом и отдельных экосистем. Я бы особенно выделил работы профессора В.Г. Горшкова (С.-Петербург) и профессора Н.С. Печуркина (Красноярск), во многом весьма различные и, как всегда бывает в таких случаях, вероятно, весьма дополняющие друг друга. Еще рано говорить о построении динамики биосферы как стройной теории, способной быть инструментом анализа устойчивости биосферы. [3, 455-461].

Биосфера представляет собой грандиозную нелинейную систему. Однако до сих пор основное внимание исследователей уделялось изучению отдельных фрагментов этой системы. Я бы позволил себе сказать более жестко: в центре внимания исследователей были, прежде всего, многочисленные механизмы отрицательной обратной связи. И нетрудно понять, почему именно к ним было приковано внимание исследователей. В самом деле, наиболее концептуально интересен вопрос о стабильности биосферы, ее способности реагировать на внешние возмущения так, чтобы они не выводили ее из состояния установившегося квазиравновесия. Я думаю, что для любого ученого, изучающего биосферу как самостоятельный объект, наиболее интересен вопрос справедливости принципа Ле Шателье. И в этом плане, как мне кажется, в последние десятилетия получены результаты первостепенной важности, которые показали удивительные способности биоты противостоять внешним возмущениям. Однако лишь в определенных пределах, которые еще придется установить.

Но описать особенности эволюции биосферы с помощью одних механизмов отрицательных обратных связей нельзя. Как во всякой сложной развивающейся системе, в ней присутствует и множество положительных обратных связей. Обойтись без них тоже нельзя, поскольку именно положительные обратные связи и являются ключом к развитию системы, то есть усложнению системы и росту разнообразия ее элементов, что приводит к сохранению ее целостности (хотя может привести и к другому состоянию квазиравновесия).

Таким образом, любая сложная саморазвивающаяся система всегда обладает неким набором механизмов, некоторые из которых играют роль положительных, а другие - отрицательных обратных связей. Первые отвечают за развитие системы, рост ее сложности и разнообразие элементов. Вторые - за стабильность (гомеостаз) системы и сохранение уже существующего квазиравновесия. Разделение этих механизмов весьма условно. Однако оно дает качественное представление о характере функционирования сложной развивающейся системы. В настоящее время наибольшее внимание привлекает изучение механизмов отрицательной обратной связи, что, на мой взгляд, достаточно естественно, поскольку человек живет в определенных условиях, к которым он адаптировался. И смена этих условий может оказаться трагичной. Но изучение отдельных механизмов, даже в их сочетании, еще недостаточно для построения теории развития биосферы. А без такой теории говорить о стратегии человечества во взаимоотношениях с биосферой очень трудно и опасно.

Дело в том, что биосфера - система существенно нелинейная, и она даже без активных внешних воздействий способна к кардинальным перестройкам своей структуры. И теория развития биосферы не может считаться полноценной, если не изучено множество ее бифуркационных состояний, условий перехода из одного состояния в другое и структура аттракторов, то есть окрестностей более или менее стабильных состояний.[9, 22-23].

Однако система уравнений, описывающая функционирование биосферы даже в ее простейшем варианте, столь сложна, что непосредственное использование математических методов (то есть теории динамических систем) представляется крайне сложным. Поэтому пока что единственным эффективным способом анализа может служить эксперимент с компьютерными моделями, имитирующими динамику биосферы.

Таким образом, теория биосферы должна представлять собой не просто совокупность изученных механизмов функционирования отдельных элементов биоты и абиотических составляющих биосферы, взаимодействие которых способно реализовать принцип Ле Шателье (что, разумеется, совершенно необходимо). Для того чтобы обеспечить выживание человечества как вида, обеспечить возможность дальнейшего развития его цивилизации, нам предстоит изучить динамику биосферы как нелинейной системы, изучить структуру ее аттракторов и границы между областями их притяжений.

Итак, возникает новая фундаментальная наука. И она носит абсолютно прикладной характер, поскольку эта дисциплина сделается научной базой судьбоносных решений для человечества. Заметим еще раз, что переход биосферы из одного состояния в другое вовсе не обязательно требует мгновенных сверхнагрузок, как при атомных взрывах и последующих пожарах. Катастрофа может подкрасться и незаметно. И стратегия развития человечества не просто должна быть согласована с развитием биосферы, но должна быть такой, чтобы развитие биосферы происходило в нужном для человечества эволюционном канале.

Другими словами, обеспечение коэволюции человека и биосферы (или, что то же самое, для реализации стратегии sustainable development) требует развития специальной синтетической научной дисциплины. Работа по созданию такой дисциплины, по существу, уже началась. Ее естественной составляющей является экология. Я подчеркиваю - составляющей, ибо проблемы, которыми сегодня занимается экология, получившая широкое развитие за послевоенные десятилетия, не включают в себя целый ряд вопросов, жизненно важных для будущего, для поисков пути в эпоху ноосферы. И в частности, пока еще не занимается исследованием биосферы как целостной динамической системы.

В эволюции биосферы главенствующая роль принадлежит биоте: это соответствует значимости тех функций, которые выполняет система живых организмов при формировании горных пород, почвы, атмосферы и океана, хотя при этом не отрицается и не умаляется значение абиотических факторов. Эволюция биоты реализуется через процесс видообразования, причем в силу системности ее организации исчезновение какого-либо вида с арены жизни или появление нового вида практически всегда влекут волну видовых изменений в экосистемах, с которыми соотносится данный вид (в его «экологической нише»). Имеются оценки скорости этого процесса. По палеонтологическим данным, средняя продолжительность существования вида составляет около 3 млн лет. Согласно современным представлениям, для естественного образования нового биологического вида требуется период того же порядка длительности. Эта скорость вряд ли менялась в течение нескольких сотен миллионов лет.

Заключение.

Для понимания процессов эволюции живого необходимо разоб-раться в процессах образования новых тканей и органов, моделиро-вать морфогенез. Математическая модель морфогенеза как последова-тельности фазовых переходов содержит информацию о предшеству-ющих состояниях и учитывает возникновение кооперативных взаи-модействий между клетками, связанных с биохимическими автоволновыми процессами.

Эволюция не обязательно но-сит постепенный характер. Видообразование путем по-липлоидии, за счет хромосомных перестроек, по сути дела, носит внезапный характер. Не исключено, что в отдельных случаях внезапный характер могут иметь и отдельные макроэволюционные события.

Как видно, современная эволюционная биология далеко, ушла от той. синтетической теории эволюции, которая сформировалась к началу 40-х гг. XX в. Синтез эволюционизма с молекулярной биологией привел в 70-х гг. к возникновению такого направления, как молекулярная эволюция. Выйдя за пределы изучения наследственности только лишь гибридизационными методами, эволюционизм подошел к возникновению эволюционной и сравнительной генети-ки. Сегодняшняя эволюционная биология накопила ог-ромный арсенал фактов и идей, не вошедших в синте-тическую теорию эволюции. Однако новейший синтез, создание целостной концепции эволюции, которая смо-жет заменить синтетическую теорию эволюции, пока что дело будущего.

Итак, из сказанного видно, что 125 лет развития нау-ки после выхода в свет труда Ч. Дарвина не прошли даром. Новые открытия заставляют каждое новое по-коление биологов по-новому воспринимать и трактовать закономерности эволюционного процесса. Современная биология далеко отошла не только от классического дарвинизма второй половины XIX в., но и от ряда по-ложений синтетической теории эволюции: Вместе с тем несомненно, что магистральный путь развития эволюци-онной биологии лежит в русле тех идей и тех направ-лений, которые были заложены гением Дарвина 145 лет назад.

Список литературы

1.
Алимов А.Ф., Левченко В.Ф., Старобогатов Я.И., Биоразнообразие, его охрана и мониторинг // Мониторинг биоразнообразия. М. 1997.

2. БСЭ, 1975 г., т. 20, Постулат.

3. Воробьев Р.И. Эволюционное учение вчера, сегодня и. - М., 1995

4. Воронцов Н.Н. Развитие эволюционных идей в биологии. - М., 1999

5. Гейзенберг В. Физика и фи-лософия. Часть и целое. - М., 1989.

6. Георгиевский А.Б. Дарвинизм. - М., 1985

7. Горелов А.А. Концепции современного естествознания. - М., 1997

8. Дарвин Ч. Соч. Т. 3. - М.-Л., 1939.

9. Левченко В.Ф., О внутренних связях и консервативности структур экосистем // Методологические проблемы эволюционной теории. Тарту. 1984.

10. Левченко В.Ф., 1990. Эволюционная физиология и эволюционная экология - что общего? // Журнал эволюционной биохимии и физиологии т.26б, № 4

11. Левченко В.Ф., 1993. Модели в теории биологической эволюции. Наука СПб.

12. Левченко В.Ф., Старобогатов Я.И., 1990. Сукцессионные изменения и эволюция экосистем (некоторые вопросы эволюционнной экологии) // Журнал общей биологии, т.51, № 5.

13. Левченко В.Ф., Старобогатов Я.И.,1986. Два аспекта эволюции жизни: физический и биологический // Физика: проблемы, история, люди Л. Наука.

14. Найдыш В.М. Концепции современного естествознания. - М., 1999

15. Пригожий И., Стенгерс И. Порядок из хаоса. - M., 1986.

16. Старобогатов Я.И. О соотношении стационарного и эволюционного аспектов в изучении живого // Микро- и макроэволюция. Тарту. 1980.

17. Яблоков А.В., Юсуфов А.Г. Эволюционное учение: Дарвинизм. - М., 1989.

Страницы: 1, 2


ИНТЕРЕСНОЕ



© 2009 Все права защищены.