бесплатно рефераты
 

Способы получения ферментов

Способы получения ферментов

Содержание

  • Введение

1. Осаждение

1.1 Высаливание

1.2 Изменение температуры и рН

1.3 Осаждение органическими растворителями

2. Коагуляция и флокуляция2.1 Цельные клетки

2.2 Остатки клеток и белки

3. Центрифугирование

3.1 Сигма-анализ

3.2 Центрифуги с роторами трубчатого типа

3.3 Многокамерные центрифуги

4. Хроматография

4.1 Адсорбция

4.2 Сорбция-десорбция

5. Электрофорез и центрифугирование

5.1 Электрофорез

5.2 Зональное ультрацентрифугирование

6. Отделочные операции

6.1 Обессоливание

6.2 Концентрирование

6.3 Сушка

7. Биологическая безопасность при промышленном производстве

7.1 Меры безопасности

7.2 Контроль окружающей среды

7.3 Обучение персонала и медицинская защита

7.4 Обработка отходов

7.5 Безопасность и безвредность продукта

8. Резюме по процессам выделения

8.1 Выделение внеклеточных ферментов

8.2 Выделение внутриклеточных ферментов

8.3 Непрерывное выделение ферментов

8.4 Одновременное выделение внеклеточных и внутриклеточных ферментов

Список использованных источников

  • Введение

Экстракты ферментов находили свое применение, вероятно, еще до того, как стала записываться история. Одним из примеров подобного применения является соложение ячменя и использование полученного экстракта для разжижения крахмала. В 1883 г. Рауеп и Persoz показали, что агент, ответственный за разжижение крахмала, который они назвали диастазой, подвергался разрушению под воздействием кипячения, действовал как катализатор и мог быть сконцентрирован и очищен путем осаждения спиртом. В 1878 г. для наименования подобных агентов Kuhn ввел термин «фермент». Blurnenthal в 1885 г. описал один из первых крупномасштабных процессов экстракции и очистки ферментов применительно к сычужному ферментов. Еще в 1902 г. Emmerich, Low и Korschun предложили применение бактериальных ферментов в клинической практике. В 1908 г. Wallenstein сообщил о стабилизации солодовой диастазы с помощью сульфата кальция, а в 1915 г. Rohm установил, что белье, подвергаемое стирке, может быть доведено до нужной степени чистоты более легко и при более низкой температуре воды, если его предварительно обработать липазами и протеазами. В 1926 г. впервые, фермент уреаза был получен Sumner в кристаллическом виде и была показана его белковая природа. К 1930 г. было охарактеризовано около 80 ферментов, к 1947 г. -- примерно 200, а к 1968 г.-- свыше 1300. Большинство из известных ферментов подвергалось выделению лишь несколько раз" и то в незначительных количествах.

Почти все ферменты, выделяемые в настоящее время в промышленных масштабах, относятся к внеклеточным, т. е. к таким, которые выделяются клетками в окружающую среду. Выделение таких ферментов проще, чем внутриклеточных. Целевые ферменты, находящиеся внутри микробных клеток, не только имеют свойства, которые весьма похожи на свойства многих других внутриклеточных ферментов, но также сильно загрязнены различными контаминантами. У многих микроорганизмов внутриклеточные ферменты защищены исключительно плотной оболочкой. Однако, несмотря на это, за последние годы несколько внутриклеточных ферментов начали производиться в промышленных масштабах. К ним, в частности, относятся глюкозооксидаза для консервации пищевых продуктов, пенициллинацилаза для превращения антибиотиков и аспарагиназа для возможной терапии раковых заболеваний. Хотя процессы выделения внутриклеточных и внеклеточных ферментов существенно отличаются друг от друга, многие из применяемых для этого операций являются общими. Следует сделать особый акцент на указанной общности, поскольку именно в этом направлении усматриваются наибольшие надежды на то, что в будущем значительно больше ферментов станет производиться промышленностью на одних и тех же технологических линиях.

Подавляющее большинство применяемых в настоящее время ферментов относится к внутриклеточным. До тех пор, пока не будут найдены штаммы микроорганизмов, способные к выделению таких ферментов в культуральную жидкость, главная роль в прогрессе производства ферментов будет принадлежать технологической стадии выделения их из клеток. Есть основания полагать, что в ближайшее десятилетие многие из известных ферментов смогут выделяться из микробных клеток уже в промышленных масштабах, что создаст стимул для реализации на практике ряда процессов биосинтеза и биотрансформации в реакторах с изолированными биокатализаторами-ферментами.

1. Осаждение

Процесс при котором добавление некоторых реагентов или изменение условий вызывает выход белка из раствора с образованием осадка нерастворимых частиц называется преципитацией, или осаждением. В ферментологии этот термин не имеет того специфического сопутствующего значения, которое характерно для общей химии, где он означает химическое связывание за счет обмена связями-мостиками. В самом деле, круг методов осаждения ферментов чрезвычайно широк. Эти методы простираются от добавления нейтральных солей и спиртов или изменения рН до специфического химического действия ионов металлов и органических реагентов.

1.1 Высаливание

Термином «высаливание» называют осаждение белков при высокой концентрации нейтральных солей. Этот метод является одним из старейших и наиболее широко применяемых 'при выделении или фракционировании белков. Среди применяемых солей предпочтение отдается сульфату аммония, так как он достаточно дешев и имеет высокую растворимость даже при пониженных температурах. При хранении сульфат аммония проявляет тенденцию к закислению, а при повышенных значениях рН -- к выделению аммиака. Поскольку сульфат аммония в высшей степени коррозионно способен в отношении металлов и бетона серьезную проблему составляет нейтрализация его остатков.

Сульфат натрия не имеет указанных недостатков, но должен применяться с целью достижения адекватной растворимости при температуре 35--40 °С. Резкое снижение растворимости при повышении температуры позволяет достаточно просто обеспечить «восстановление» остаточной соли, но требует для этого предварительного нагревания любого производственного оборудования и осуществления строгого контроля температуры с тем, чтобы предотвратить преждевременную кристаллизацию и забивание оборудования, и коммуникаций. Наблюдаемое снижение растворимости белка при повышении концентрации соли может быть охарактеризовано уравнением

где -- растворимость белка; с -- концентрация соли; и К-- константы, индивидуальные для каждой конкретной белковой системы ( является также функцией температуры и рН).

Данное эмпирическое уравнение справедливо только для конкретного режима высаливания. Оно дает надлежащую основу для проведения в лабораториях операций фракционированного осаждения, благодаря которым ферменты с различными значениями (J3 и К частично, разделяются друг от друга. При проведении лабораторных экспериментов наблюдали, что усиление перемешивания оказалось выгодным при осуществлении периодического процесса осаждения пектиназы в том отношении, что оно позволяло увеличить скорость всего процесса осаждения и выделения фермента.

Все это уменьшало зависимость потерь фермента от продолжительности процессов обработки. При использовании сульфата аммония показано, что феномен осаждения критически зависит от примененного метода контактирования соли с обрабатываемой жидкостью.

Периодическое осаждение насыщенным раствором сульфата аммония повышало процент насыщения, при котором происходило высаливание, по сравнению со случаем, когда применялась та же соль, но в твердом состоянии. Очевидно, что непрерывное контактирование в потоке соли и белка с последующим уравновешиванием будет вести к дальнейшему изменению положения метода высаливания среди других методов выделения ферментов.

Для фумаразы и спиртовой дегидрогеназы, которые также подверглись изучению, уравнение скорости осаждения имеет такой порядок кинетики, который первоначально характеризуется весьма высокими значениями (до 3,1), но по мере завершения процесса приближается к единице. Образование твердой фазы завершалось примерно после 4-минутной экспозиции. Формирование осадка сопровождалось его ресуспендированием. Последний процесс характеризовался уравнением скорости первого порядка. Таким образом, различие между точкой завершения осаждения и конечным равновесием было эквивалентно примерно 4,5 % от насыщения.

1.2 Изменение температуры и рН

Зависимость величины из уравнения от температуры и рН означает, по существу, что изменение растворимости может быть достигнуто или путем поддержания постоянства ионной силы раствора или же путем варьирования температурой или рН. Большинство белков проявляет нормальное увеличение растворимости при повышении температуры. Благодаря тому, что для ферментов наблюдается также обычная зависимость растворимости от температуры, температурные воздействия не часто применяются для интенсификации процесса фракционирующего осаждения. Однако различия в стабильности ферментов при повышенных температурах выражены довольно четко. Поэтому общепринятой процедурой для них служит селективная тепловая денатурация, которая ведет к необратимому осаждению. Причинами, по которым такая методика пользуется успехом у промышленников, являются ее простота и отсутствие необходимости иметь специальный, зачастую довольно дорогой реагент. Однако данный метод требует строгого контроля во избежание потерь продукта. Кроме того, зарастание теплообменников денатурированным белком может сделать метод трудно реализуемым.

Изменение рН также привлекает внимание как промышленный метод фракционированного осаждения, поскольку стоимость реагентов в этом случае невелика. Наличие широкого разнообразия соотношений между основными и кислыми группами в молекулах различных ферментов обусловливает широкий диапазон значений рН, при которых ферменты характеризуются изоэлектрическими свойствами или имеют пулевой заряд. Это согласуется с теорией растворимости, так как в указанной точке наблюдается самая низкая эффективная полярность, и фермент проявляет низкую растворимость в полярной водной среде.

Принципиальной трудностью в использовании диффepeнциaльнoгo осаждения под воздействием изменения рН является то, что диапазон рН, в котором многие ферменты остаются еще стабильными, весьма узок. Dunnill и другие исследователи, проводившие эксперименты с выделением пролил-t-PHK синтетазы из сои с применением Phaseolus aureus, попытались осуществить периодическое фракционирующее осаждение с помощью уксусной кислоты. Было установлено, что при рН 5,0 основная часть белка переходила в осадок, однако для перевода в осадок синтетазы оптимум рН находится на уровне 4,2. Из-за того, что стабильность фермента при низких значениях рН резко уменьшалась, процесс сопровождался значительными потерями материала. По этой причине было применено непрерывное осаждение в сочетании с непрерывной сепарацией при использовании дисковых центрифуг с периодической разгрузкой. Это снижает длительность процесса переработки 25 кг сои с 9,5 до 3 ч. Масштабирование указанного процесса возможно без изменения оборудования.

1.3 Осаждение органическими растворителями

Теперь уже вполне определенно известно, что большинство молекул ферментов имеют полярные группы, являющиеся внешними по отношению к молекуле. Добавление органических растворителей к водным растворам белков будет понижать диэлектрическую постоянную смеси, создавая среду, которая больше отличается от полярной поверхности молекул фермента. Как свидетельствует теория растворимости, это ведет к снижению растворимости белков. Однако, поскольку молекулы ферментов имеют внутренние гидрофобные аминокислотные остатки и поэтому относительно свободно могут свертываться, то альтернативно добавлению органических растворителей они принимают новую, неактивную форму с экспонированием в окружающую среду гидрофобных группировок. Повреждение таких молекул при изменении их формы и последующая денатурация тем больше, чем выше температура. Это приводит к необходимости использовать для фракционирования большинства ферментов с помощью органических осадителей низкие температуры (часто ниже 0° С).

2. Коагуляция и флокуляция

Слово «коагуляция» описывает в данном случае ситуацию, когда очень мелкие частицы вынуждены сцепляться друг с другом. Заряд на частицах нейтрализуется при добавлении поливалентных ионов, несущих противоположный заряд, вследствие чего наступает их коалесценция (слипание). Довольно долго в этих целях использовали неорганические соли. В последние годы получили распространение органические полиэлектролиты.

Термином «флокуляция» описывается образование значительно более рыхлых агрегатов, в которых флокулирующий агент выполняет роль мостикообразова- теля между частицами. Флокулирующие агенты включают в себя различные природные полимеры, такие, как желатина, и большое количество синтетических полимеров. Полимеры могут быть электролитами или неэлектролитами. Неорганические ионы не могут вызывать флокуляцию, хотя они могут быть использованы для нейтрализации зарядов частиц и в этом отношении способствовать флокуляции. Органические полиэлектролиты могут вызывать одновременно и коагуляцию и флокуляцию. Методы коагуляции и флокуляции применяют при работе с цельными микробными клетками, остатками клеток после лизиса и растворимыми белками.

2.1 Цельные клетки

При выделении ферментов флокулянт, если он присутствует в системе, не должен взаимодействовать с внеклеточными ферментами. При промышленном получении внеклеточной протеазы из Bacillus subtilis успешное применение нашли синтетические полиэлектролиты как вспомогательное средство, облегчающее отделение микробных клеток на фильтр-прессах. Поскольку флокулянт связывается с клетками, он может при последующем разрушении клеток для выделения ферментов войти в контакт с этими ферментами.

Проблеме коагуляции и флокуляции микробных клеток посвящено весьма мало исследований, за исключением работ, направленных на решение частных задач в пивоварении. Nakamura со ставил перечень основных требований, которые должны предъявляться к реагентам, предназначенным для применения в качестве коагулянтов или флокулянтов микробных клеток. К ним относятся: низкая стоимость, низкая доза применения и отсутствие резкого влияния на изменение рН. Среди неорганических веществ в качестве потенциальных коагулянтов было испытано множество агентов, включая квасцы, соли железа и кальция. Хлорид кальция (0,1--0,5 %) применялся с гидроокисью натрия (0,2--0,8 %) для того, чтобы обеспечить поддержание рН смеси на уровне 8,0--9,5. Эффективным агентом при этом оказалась гидроокись кальция, вызывающая коагуляцию и копреципитацию (совместное осаждение). Кальций может быть удален из концентрированной клеточной массы путем добавления разбавленной кислоты. Особенно эффективными оказались титановые соли в концентрации около 0,01 % для дрожжей, бактерий и микроводорослей. Это связано с четырехвалентным зарядом иона титана.

Была изучена флокуляция различных бактерий катионным полиамином и положительно заряженными микроскопическими волокнами алюминия. Количество алюминия, потребного для флокуляции Е. coli, составляло около одной десятой от того, что требовалось в случае Lactabacillus deilbruckii. Эффективность флокуляции зависела от температуры, физиологического «возраста» культуры, характера суспендирующей среды и особенно от фактических усилий сдвига, воздействовавших; на клетки перед флокуляцией.

2.2 Остатки клеток и белки

Получающиеся после разрушения микробных клеток (для выделения внутриклеточных ферментов) остатки клеточной оболочки обычно подлежат удалению из смеси до того, как она будет подвергнута фракционированию с целью получения различных белковых компонентов. Остатки клеток при механическом разрушении последних колеблются в размерах от нескольких микрон до долей микрона и поэтому трудно подвергаются извлечению из смеси. На помощь в этом случае приходят флокуляция и коагуляция клеточных остатков. Однако весьма существенно, что такие методы обработки суспензий приводят к переводу в нерастворимое состояние также и внутриклеточных ферментов. В отношении седиментации клеточных остатков эффективными коагулянтами оказались квасцы. Однако они переводят белок в нерастворимое состояние с образованием мелких, медленно оседающих, нерастворимых флокул.

Флокуляция или коагуляция ферментов с целью получения нерастворимых белковых агрегатов представляет собой достойную альтернативу классическим методам осаждения, которые требуют высоких концентраций реагентов.

На протяжении ряда лет с целью выделения внеклеточных ферментов из культуральных жидкостей использовалась дубильная кислота. В концентрациях 0,1 --1,0 % она образует легко фильтрующиеся осадки. Флокулы содержат достаточно устойчивые ферменты и могут быть промыты ацетоном для удаления дубильной кислоты. В случае применения таких носителей, как крахмал (2-- 5 %), при высушивании флокул может быть достигнуто 100-кратное увеличение концентрации ферментов. Непосредственное высушивание в отсутствии носителя обеспечивает 500- кратное увеличение концентрации. Флокулы обладают тем недостатком, что трудно подвергаются растворению.

3. Центрифугирование

Отделение твердых частиц от жидкостей представляет собой основную операцию в процессе выделения ферментов. Оно включает выделение клеток из культуральной жидкости, удаление клеточных остатков, сбор осадка и выделение адсорбентов белка из белоксодержащей надосадочной жидкости. Общепринято также включать в эту операцию отделение растворенных макромолекул от растворителя с помощью ультрацентрифугирования.

3.1 Сигма-анализ

Определенные трудности при сепарировании биологических частиц центрифугированием проистекают чаще всего из недостаточного понимания принципов процесса седиментации частиц в гравитационном поле. Эффективность центрифугирования повышается при увеличении диаметра частиц, разности между плотностями частицы и жидкости и при уменьшении вязкости жидкости. Эффективность также возрастает при повышении угловой скорости, увеличении радиуса центрифугирования, увеличении объема жидкости и уменьшении толщины слоя жидкости, подвергаемой центрифугированию. Однако биологические частицы характеризуются низкой плотностью и очень малыми размерами. Они также могут находиться в среде, которая благодаря присутствию растворенных твердых частиц обладает высокой вязкостью и повышенной плотностью.

В условиях лабораторий указанные неудобства могут быть преодолены путем применения центрифуг с высокой угловой скоростью. Однако эти центрифуги имеют очень малую производительность и работают периодически с точки зрения подачи в них суспензии и извлечения надосадочной жидкости и сконцентрированных твердых частиц. В случае центрифуг промышленного типа повышение производительности за счет увеличении радиуса центрифугирования не может быть достигнуто, так как механические напряжения возрастают пропорционально квадрату радиуса. Поэтому конструкция машины при увеличении радиуса ротора быстро становится небезопасной для применения.

Увеличение вместимости корзины центрифуги и непрерывное пропускание через нее центрифугируемой жидкости ограничивает величину безопасной угловой скорости. Эта величина также ограничивается, если твердый осадок подлежит разгрузке непосредственно в ходе операции, поскольку значительное влияние на угловую скорость оказывает степень дебаланса. Исходя из этих ограничений, промышленность создала ряд центрифуг, применимых к переработке продуктов биологической природы. Но только лишь некоторые из них оказались пригодными для выделения ферментов, так как чрезвычайно ограничивающим фактором в этом отношении являются свойства системы жидкость -- «твердая» частица. Для сепарации микробных клеток, остатков животных и микробных клеток и различных типов осадков применяются главным образом три типа центрифуг: трубчатые, многокамерные и дисковые. Меньшее, хотя и очень важное, применение находят спиральные центрифуги, центрифуги с твердой корзиной и ультрацентрифуги.

3.2 Центрифуги с роторами трубчатого типа

Цилиндрический ротор подвешивается при помощи гибкого вала к находящемуся в головке центрифуги мотору или воздушной турбине. Такая конструкция снижает нагревание ротора по сравнению с тем, что имеет место при нижнем расположении привода. Ротор установлен в подшипниках скольжения из мягкого металла. Для этой цели обычно применяется латунь, и хотя теоретически контакт между обрабатываемой жидкостью и подшипниками и данном типе машин не должен иметь места, тем не менее в тех случаях, когда обработке подвергаются растворы сульфата аммония, может происходить явная контаминация их медью. Подшипники скольжения из сплава Вууда являются в этом плане относительно надежной альтернативой при более высокой или более низкой частоте вращения в машинах небольших масштабов. Ослабление таких подшипников дает возможность ротору возвращаться в центрированное положение во время любого временного разбалансирования и обеспечивает более высокую частоту вращения по сравнению со всеми другими типами центрифуг, за исключением зональных ультрацентрифуг. В случае лабораторной модели центрифуги Sharpies IP (Pennwalt) с диаметром ротора 4,5 см и частотой вращения 50 ООО об/мин развивается усилие в 62 500 g, а в случае модели 6Р (диаметр ротора 10,8 см, частота вращения 15 500 об/мин) -- 14 000 g. Модель IP оснащена воздушной турбиной, модель GP приводится в действие с помощью электродвигателя.

Страницы: 1, 2, 3


ИНТЕРЕСНОЕ



© 2009 Все права защищены.