бесплатно рефераты
 

Состояние глутатионового звена антиоксидантной системы крови практически здоровых людей с лор-паталогиями, проживающих в различных районах города Красноярска

p align="left">2. Ацетонциангидрин.

3. Калибровочный раствор гемоглобин с концентрацией 120 г/л.

Ход определения

К 5 мл трансформирующего раствора добавляют 0,02 мл крови (разведение в 251 раз) или гемолизата, хорошо перемешивают. Определение проводят через 10 минут против холостой пробы (трансформирующего раствора), окраска устойчива в течение не менее 1 часа.

При использовании фотоколориметра определение проводят в диапазоне длин волн 500-560 нм (зелёный светофильтр). Калибровочный раствор гемоглобина обрабатывают также, как и пробу цельной крови. Расчёт содержания гемоглобина производят по формуле:

,

где:

Hb - содержание гемоглобина в опытной пробе, г/л;

Dо - оптическая плотность опытной пробы;

Dx - оптическая плотность калибровочной пробы;

120 - содержание гемоглобина в калибровочном растворе, г/л.

2.4. Определение количества восстановленного глутатиона

Принцип метода основан на взаимодействии GSH с ДТНБК (5,5'-дитио-бис-2-нитробензойной кислотой) с образованием окрашенного в желтый цвет аниона 2-нитро-5-тиобензоата. Увеличение концентрации желтого аниона в ходе данной реакции регистрировали спектрофотометрически при длине волны 412 нм [Beutler, 1990].

Ход определения

Готовим гемолизат добавлением 0,2 мл отмытых от плазмы и упакованных эритроцитов к 1,8 мл дист. Н2О, охлаждённой до 0єС. Для осаждения белков к гемолизату добавляли 3 мл осаждающего раствора. Пробы тщательно перемешивали и после 20 минутного стояния при комнатной температуре фильтровали через крупнопористый фильтр. Фильтрат должен быть прозрачным и бесцветным. 1 мл фильтрата помещали в спектрофотометрическую кювету объёмом 3 мл, добавляли 4 мл фосфатного буфера. Затем в пробу вносили 500 мкл раствора ДТНБК. Сразу же после перемешивания должна появиться жёлтая окраска из-за образования дисульфида глутатиона с ДТНБК. Пробу фотометрировали при длине волны 412 нм в кювете с толщиной слоя 1,0 см. Поскольку раствор ДТНБК имеет слабожелтую окраску, параллельно с опытной пробой готовили контрольную, содержащую вместо фильтрата осаждающий раствор, разведённый дист. Н2О в отношении 2:5.

Реактивы:

1. Осаждающий раствор: 1,67 г ледяной ортофосфорной кислоты, 0,2 г ЭДТА и 30 г хлористого натрия растворяли в дист. Н2О и доводили до метки 100 мл.

2. Фосфатный буфер: 0,3 М Na2HPO4

3. ДТНБК: 0,02%-ный раствор, приготовленный на 1%-ном растворе цитрата натрия

Содержание восстановленного глутатиона рассчитывали с учетом коэффициента молярной экстинкции (13600 М-1см-1) окрашенного аниона, образующегося при взаимодействии GSH с ДТНБК и выражали в мкмоль на грамм Hb.

Содержание глутатиона рассчитывают по формуле:

,

где:

С - концентрация восстановленного глутатиона, мкмоль/г Hb;

Е1 - оптическая плотность опытной пробы до добавления ДТНБК;

Е2 - оптическая плотность опытной пробы после добавления ДТНБК;

138 - разведение эритроцитов в реакционной пробе;

Hb - гемоглобин, г/л;

1000 - коэффициент для пересчета концентрации глутатиона от молярной к миллимолярной;

F - отношение оптической плотности контрольной пробы до добавления ДТНБК (Е1 ) и после добавления (Е2 );

13600 - коэффициент молярной экстинции окрашенного катиона, образующегося при взаимодействии GSH с ДТНБК;

2.5. Определение активности глутатионпероксидазы

Принцип метода: глутатионпероксидаза катализирует реакцию взаимодействия GSH с гидроперекисью трет-бутила (ГПТБ). Активность фермента при этом может быть оценена по изменению содержания GSH в пробах до, и после инкубации с модельным субстратом в ходе цветной реакции с ДТНБК [Paglia, Valentine, 1967].

Ход определения

Отмытые и упакованные эритроциты гемолизировали охлаждённой до 0єС водой в соотношении 1:200. 0,2 мл гемолизата смешивали с 0,73 мл сложного буфера и термостатировали 10 мин при 37°С. Реакцию инициировали внесением в реакционную смесь 0,07 мл 0,14%-ного раствора ГПТБ (коммерческий препарат). Строго по секундомеру через 5 мин инкубации при 37°С реакцию останавливали добавлением 0,2 мл 20%-ного раствора ТХУ. В контрольные пробы 0,14%-ный раствор ГПТБ вносили после осаждения белка ТХУ. Полученные пробы центрифугировали при 1700g в течение 10 мин. Супернатант использовали для определения количества восстановленного глутатиона: к 0,1 мл супернатанта добавляли 2,65 мл 0,1 М трис-HCl буфера. После перемешивания пробы фотометрировали на СФ-26 при длине волны 412 нм в кювете с длиной оптического пути 1,0 см против дист. Н2О. Активность фермента в эритроцитах выражали в мкмолях GSH, окисленного за 1 минуту на грамм Hb, используя коэффициент молярной экстинкции (13600 М-1см-1) окрашенного аниона, образующегося при взаимодействии GSH с ДТНБК.

Реактивы:

1. Сложный буфер: 0,1М Трис-HCl-буфер, pH8,5, содержащий 6мМ ЭДТА и 12мМ азид натрия. Непосредственно на этом буфере готовят 4,8 мМ раствор GSH

2. 0,14%-ный раствор трет-бутил гидропероксида

3. 20%-ный раствор ТХУ

4. 0,1 М трис-HCl буфер, pH8,5

5. ДТНБК на абсолютном метаноле, 0,01М

Активность рассчитывают по формуле:

,

где:

А - активность фермента, мкмоль/минЧл;

?С - разность концентраций GSH в опытной и контрольной пробах;

Vпр. - объем пробы, используемый для определения концентрации GPO

t - время инкубации;

Vр.с..- объем реакционной смеси;

201 - степень разведения эритроцитов в гемолизате;

1000 - коэффициент для пересчета активности GPO от молярной к миллимолярной;

Hb - гемоглобин г/л;

Активность GPO можно также выразить в мкмоль\мин на 1 г Hb

2.6. Определение активности глутатион-S-трансферазы

Принцип метода: активность глутатион-S-трансферазы определяли по скорости образования глутатион-S-конъюгатов между GSH и 1-хлор-2,4-динитробензолом (ХДНБ).

Увеличение концентрации конъюгатов в ходе реакции регистрировали спектрофотометрически при длине волны 340 нм (максимум поглощения глутатион -S- ХДНБ) [Habig et al., 1974].

Ход определения

Источником фермента служил осмотический гемолизат, который готовили добавлением к одному объему упакованных эритроцитов двадцати объемов дист. Н2О, охлажденной до 0С. В кювету с длиной оптического пути 1,0 см, содержащую 2,5 мл 0,1 М калий-фосфатного буфера рН=6,5, добавляли 0,2 мл 0,015 М раствора восстановленного глутатиона и 0,1 мл гемолизата. Реакцию инициировали внесением в кювету 0,2 мл 0,015М ХДНБ (готовили на абсолютном метаноле). Параллельно опытной готовили контрольную пробу, в которую вместо гемолизата вносили дист. Н2О. Регистрацию оптической плотности проводили при t=25C и длине волны 340 нм против воды сразу после перемешивания в течение трех минут. Активность фермента рассчитывали, используя коэффициент экстинкции для ГS-ХДНБ при длине волны 340 нм, равный 9,6 мМ-1*см-1, и выражали в ммолях образующихся глутатион S-конъюгатов в минуту на грамм Hb.

Реактивы:

1. 0.1М калий - фосфатный буфер РН6,5;

2. 0.015М раствор GSН;

3. 0.015М раствор ХДНБ.

Активность GPO рассчитывают по следующей формуле:

где:

А - активность фермента, моль\минЧHb

?E - изменение оптической плотности в мин.

d - толщена кюветы (1см)

f - коэффициент разведения эритроцитов в пробе

е - коэффициент молярной экстинкции при ч=340нм (9600М-1Чсм-1)

Hb - гемоглобин г/л

1000 - коэффициент для пересчета активности GST от молярной к миллимолярной;

Vпр. - объем пробы, используемый для определения активности GST

Vр.с..- объем реакционной смеси;

2.7. Определение активности глутатионпероксидазы

Принцип метода: определение активности глутатионредуктазы основано на измерении скорости окисления NADPH, которая регистрируется спектрофотометрически по уменьшению оптической плотности при длине волны 340 нм .

Для определения активности глутатионредуктазы использовали осмотический гемолизат, приготовленный следующим образом. К одному объему упакованных и отмытых от плазмы эритроцитов добавляли девяти кратный объем холодной дистиллированной воды.

Ход определения:

В спектрофотометрическую кювету с расстоянием между рабочими гранями 10 мм последовательно вносят 2,7 мл калий-фосфатного буфера, 0,1 мл раствора NADPH, 0,1 мл гемолизата и 0,1 мл раствора GSSG. Реакция запускается добавлением в пробу окисленного глутатиона. Смесь перемешивают. Изменеие оптической плотности регистрируют через 1 минуту в течение 3 минут против пробы, содержащей все компоненты, кроме GSSG.

Реактивы:

1. 50 мМ калий-фосфатный буфер , рН 7,0, содержащий 1мМ EDTA;

2. 0,1 мМ раствор NADPH;

3, 0,5 мМ раствор окисленного глутатиона (хранят в замороженном виде).

Активность фермента выражают в мкмолях г Hb в минуту. Расчет производят по формуле:

,

где:

А - активность глутатионредуктазы;

Е - изменение оптической плотности;

К - коэффициент, учитывающий разведение эритроцитов в реакционной пробе, равный 300;

6,22 - коэффициент экстинкции для NADPH в см-1мМ-1, при длине волны 340 нм;

t - время наблюдения, мин;

d - расстояние между рабочими гранями кюветы (10 мм);

Hb - гемоглобин в гл.

2.8. Статистическая обработка результатов

В работе использованы стандартные статистические приемы подсчета, медианы, определения 25 и 75 перцентеля с помощью пакета прикладных программ Statistica 7.0. Достоверность полученных данных оценивали с помощью непараметрического критерия Манна-Уитни, с достоверностью Р<0,05, корреляционный анализ по Спирману.

ГЛАВА 3. РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ И ИХ ОБСУЖДЕНИЕ

3.1. Анализ содержания GSH и активности глутатионзависимых ферментов в эритроцитах крови практически здоровых людей и людей с ЛОР-заболеваниями

Воздушные загрязнения играют ключевую роль в развитии окислительного стресса, который является причинной развития патологии дыхательной системы [Менщикова, 2008]. Особое положение, которое занимает эпителий легкого в отношении организма с насыщенной кислородом внешней средой, делает его объектом токсичного действия радикалов экзогенного и эндогенного происхождения. Острые респираторные заболевания являются главной причиной детской смертности: от пневмонии ежегодно в мире умирает более 4 млн. детей. В последние десятилетия наблюдается рост числа хронических неспецифических заболеваний легких, в настоящее время они занимают 3-е место среди причин смертности, в северных регионах на них приходится на 2/3 всех дней нетрудоспособности [Менщикова, 2008].

Проведенные исследования показали, что содержание восстановленного глутатиона у ЛОР-больных людей в 1,29 раза ниже, чем у практически здоровых людей. Активность GPO и GST в эритроцитах у ЛОР-больных людей снижается в 2,77 и 1,46 раз соответственно, по сравнению с активностью исследуемых показателей в эритроцитах практически здоровых людей. По активности GR достоверных отличий между исследуемыми группами не обнаружено. Полученные данные приведены в табл. 2.

Изменения содержания GSH и активности глутатионзависимых ферментов может быть обусловлено увеличением образования АФК при ЛОР-патологиях, поскольку процесс развития острых респираторных заболеваний сопровождается генерацией большого количества АФК [Miller, 1995]. Ингаляция атмосферных прооксидантных поллютантов приводит к увеличению количества альвеолярных макрофагов [Martin, 1985]. При контакте с мембраной альвеолярного макрофага частицы воздуха интенсивно повышают уровень потребления клеткой кислорода. Практически весь дополнительно поглощенный кислород не используется ни на энергетические, ни на пластические потребности клетки. Особая ферментная система фагоцитов, встроенная во внешнюю клеточную мембрану - NADPH-оксидаза изменяет электронную структуру молекулы кислорода, превращая его в главное оружие бактерицидной защиты клетки - кислородные радикалы. Прооксиданты повышают проницаемость эпителия, повреждают фибробласты, снижают выработку суперксидного аниона полимофноядерными нейтрофилами. Повреждающее действие АФК заключается в увеличении эпителиальными клетками слизи с высоким молекулярным весом, ослаблении функции ресничек, стимуляции образования тромбоксана, снижении сурфактантной активности [Lee, 1997].

Таблица 2

Содержание GSH и активность глутатионзависимых ферментов в эритроцитах крови практически здоровых и ЛОР-больных людей

Показатели

Здоровая группа Median

ЛОР-группа

Median

Достоверность

отличий

GSH

Мкмоль/гHb

2,58

1,60 4,87

N=91

2,00

1,49 2,16

N=29

Р<0,05

GPO

Мкмоль/мин*гHb

28,16

17,94 44,50

N=89

10,17

8,36 30,50

N=20

Р<0,05

GST

Моль/мин*гHb

12,14

10,03 14,14

N=90

8,33

5,19 11,40

N=28

Р<0,05

GR

Моль/мин*гHb

10,59

7,00 13,06

N=67

11,33

10,00 13,64

N=6

нет

Найденное нами снижение активности ферментов глутатионового метаболизма также может быть связано с непосредственным модифицирующим действием АФК, на ферментативные белки. Так Devies K.J. и сотрудники (1987) показали в опытах in vitro, что НО или НО + О2 вызывают изменение первичной, вторичной и третичной структур белковой молекулы. На примере большого количества белков авторы выявили высокую их чувствительность к действию АФК, что сопровождается в зависимости от типа АФК либо фрагментацией, либо агрегацией белковых молекул. Так, для большинства белков интенсивное воздействие радикалов НО приводит к их агрегации, но в присутствии О2 предпочтительным процессом становится фрагментация белковых макромолекул. Следствием таких структурных повреждений является, в частности, резкое повышение чуствительности белков к протеолитической деградации [Devies, 1995; Дубинина, 2001; Пасечник, 2001]. Окисление отдельных аминокислот (серосодержащих, ароматических и других) ферментов сопровождается изменением ферментативной активности и структуры белка [Devies, 1995]. При этом окисленные белки способны выступать в качестве источника свободных радикалов и истощать запасы клеточных антиоксидантов, таких как аскорбиновая кислота и глутатион [Simpson, 2002; Dean, 2007; Cakatay, 2000]. In vitro показано, что продукты CРО белков опосредуют окислительное повреждение ДНК [Halliwell, 2001; Morin, 1998]. Таким образом, окисленные протеины являются не только «свидетелями», но и активными участниками процесса свободнорадикального повреждения.

Модификации под действием АФК могут подвергаться все аминокислотные остатки, но наиболее чувствительными являются остатки триптофана, тирозина, гистидина и цистеина. Кроме того, отмечена роль окислительной модификации лизина, аргинина, пролина и серина [Devies, 1995; Арчаков, 1989; Пасечник, 2001]. К тому же при наличии в среде SH-содержащих соединений они подвергаются окислению в первую очередь, что предохраняет от окисления другие функциональные группы и молекулы [Зенков, Меньщикова, Шергин, 1993]. Исходя из этого можно отметить, что в структуре активных центров рассматриваемых нами ферментов имеются перечисленные аминокислотные остатки и свободные SH-группы. Так, в активном центре молекулы GSТ имеется гистидин, а также свободная SH-группа. Активный центр GR содержит тирозин и SH-группы, при надлежащие цистеину и участвующие в связывании с окисленным глутатионом. Ферменты GPO содержит в своем активном центре аргинин и лизин [Кулинский, 1993; Чернов, 1995; Yeh, 2001].

АФК могут оказывать модифицирующее действие на белки и по опосредованным механизмам, т.е. через продукты их первичного взаимодействия с другими биомолекулами. Так, продукты взаимодействия АФК с липидами способны оказывать инактивирующее действие на многие ферменты, путём окисления их SH-, NH2- и CH3-групп аминокислотных остатков, а также образования стабильных комплексов с белками и инициирования полимеризации белковых молекул, что способствует разрушению клеточных структур. Например, продукты взаимодействия АФК с липидами (МДА, 4-гидрокси-2-ноненаль и Е-2-октеналь) активно реагируют с -2-группами остатков лизина, образуя поперечные сшивки в молекулах белка [Абрамова, 1985].

Обнаруженное нами снижение уровня GSH в эритроцитах больных людей может быть связанно с интенсивном использовании восстановленного глутатиона на метаболические процессы (для утилизации прооксидантов). Общее снижение активности антиоксидантных ферментов может быть обусловлено компенсаторными реакциями, протекающими в организме в результате развития острых респираторных заболеваний, а так же с выявленным нами понижением содержания GSH. Фермент GPO при развитии ЛОР-заболеваний играет существенную роль, поскольку его ингибирования потенцирует повреждение эпителиальных клеток экзогенной перекисью и приводит к воспалению ткани [Engstrom, 2000].

В защите эпителия трахеи, бронхов и альвеол от окислительного повреждения важную роль играют ферментативные антиоксиданты (SOD, CAT, GPO, GST), жирорастворимые фенольные антиоксиданты и аскорбиновая кислота, а также SH-содержащие антиоксиданты. Основными антиоксидантами бронхоальвеолярной жидкости является глутатион, концентрация последнего в бронхах в 70 раз больше, чем в сыворотке крови. Глутатион - внутриклеточный антиоксидант, источником его появления в бронхоальвеолярной жидкости служат разгружающиеся клетки, прежде всего лейкоциты, которые мигрируют в альвеолы и бронхи, а так же эпителиальные клетки, секретирующие глутатион во внеклеточную среду [Менщикова, 2008].

3.2. Анализ содержание GSH и активность глутатионзависимых ферментов в эритроцитах крови практически здоровых людей, проживающих в различных по уровню загрязнения районах г.Красноярска

Город Красноярск административно разделен на 7 районов, различаемых по уровню техногенной нагрузки, которая определяется структурой промышленности и энергетики, исходного и получаемого продукта, особенностями природно-климатических условий. В Советском районе расположен один из крупнейших заводов России - Красноярский алюминиевый завод, поэтому его относят к экологически неблагоприятному для проживания району. Октябрьский район считают экологически чистым районом, так как на его территории нет заводов, большое количество зеленых насаждений, а так же он находится на определенном расстоянии от промышленных предприятий города. Районы находятся на одном берегу р. Енисей, но разделены ландшафтом.

Основными вредными факторами алюминиевого производства является фтор, его соли и фтористый водород. По данным ряда авторов уровень загрязнения атмосферного воздуха фтористыми соединениями в зоне влияния выбросов алюминиевого завода превышает ПДК в 1,6-2,1 раза [Ахмедов, 2001; Новиков, 1999]. Фтористые соединения так же обнаруживаются в воде и почве и превышают контрольные в 5 раз. Токсичные соединения фтора в значительном количестве поступают через дыхательные пути, с продуктами питания, питьевой водой. С удалением населенных пунктов от источника загрязнения общая заболеваемость снижается, что свидетельствует об определенной роли вредных выбросов алюминиевого производства на формирование здоровья населения. Наиболее частыми при данном источнике загрязнения являются заболевания органов дыхания, мочеполовой системы, опорно-двигательного аппарата, кожи, подкожной клетчатки, а так же встречается уровень болезни желудка и двенадцатиперстной кишки.

Страницы: 1, 2, 3, 4


ИНТЕРЕСНОЕ



© 2009 Все права защищены.