бесплатно рефераты
 

Обмен веществ и энергии. Терморегуляция

p align="left">Регуляция обмена воды осуществляется рефлекторно с осморецепторов через нервный центр обмена воды, расположенный в гипоталамусе, с участием гормонов - антидиуретического и альдостерона.

Обмен витаминов

Витамины - это необходимые для жизни животных органические низкомолекулярные соединения различной химической природы. Они служат биокатализаторами, являясь активной частью коферментов, отдельных биохимических и физиологических процессов, обладающих высокой биологической активностью. Витамины в организм поступают с кормом, в основном с растительным. Водорастворимые витамины синтезируются и в пищеварительном тракте животных микроорганизмами. В растениях витамины находятся в виде комплексных соединений с белками и другими веществами. В процессе пищеварения 25…50% витаминов освобождаются и усваиваются. Различают витамины и витаминоподобные вещества.

Витамины - совершенно незаменимые вещества. Недостаток поступления их в организм с кормом или нарушение их усвояемости и обмена приводит к развитию заболеваний, называемых авитаминозами.

Витамины, поступившие в пищеварительный аппарат или образовавшиеся в нем, всасываются через его стенку в кровь и вступают в организме в реакции, образуя сложные производные - коферменты. Они затем соединяются с белком и образуют многочисленные ферменты. Ферменты в организме являются биологическими катализаторами, следовательно, витамины участвуют в процессах окисления и синтеза новых веществ.

Суточная потребность в витаминах определяется миллиграммами или даже их долями.

В настоящее время насчитывается более 50 витаминов. Все они составляют две группы: жирорастворимые и водорастворимые.

Жирорастворимые витамины. Жирорастворимые витамины - ретинол, кальциферолы, токоферолы, филорхиноны.

Ретинол. Поступает в организм с растительной пищей в виде провитамина А - каротина, из которого и образуется активный витамин А в слизистой кишечника, печени, молочной железе.

Ретинол входит в состав зрительного пигмента родопсина, обеспечивая зрительное восприятие. В тканях организма он стимулирует процессы синтеза, нормальное развитие мышц, слизистых оболочек, рост и развитие организма - потребность в ретиноле выше у молодняка животных. Витамин А называют еще витамином роста.

Каротин содержится в моркови, тыкве, рыбьем жире, печени, желтке яиц, масле. Потребность животных составляет 1,5 мг витамина А в сутки.

Кальциферолы. Целая группа витаминов. Поступают в организм с кормом в виде провитаминов - эргостерина, 7-дегидрохолестерина, переходят в активную форму в коже под действием ультрафиолетового излучения. Эргокальциферол стимулирует всасывание кальция и фосфора в кишечнике и почках, перенос кальция в костную ткань, отложение кальция и фосфора в костной ткани. Много кальциферолов в рыбьем жире, сливочном масле, печени и других кормах животного происхождения.

Токоферолы. Поступают в организм с пищей в активном состоянии. Обладают антиокислительными свойствами, участвуют в обмене белков, углеводов и жиров, поддерживают нормальные обменные процессы, стимулируют рост тканей эмбриона и плода, спермиогенез, устойчивость эритроцитов к гемолизу, трофические процессы в мышцах и сердце. Их много в растительном масле, ростках пшеницы.

Филлохиноны. Поступают в организм с зеленым кормом в активном состоянии. У взрослых животных синтезируются микроорганизмами желудочно-кишечного тракта. Они интенсивно задерживаются печенью и лимфатическими узлами. Филлохиноны включаются в процессы синтеза белка протромбина, через него участвуя в свертывании крови.

Водорастворимые витамины. Водорастворимые витамины - тиамин, рибофлавин, никотиновая кислота, пиридоксин, цианкобаламин, аскорбиновая кислота - витамин С) и др.

В целом витамины группы В, водорастворимые витамины, служат коферментами ферментов, исключение составляет витамин С), обеспечивающих обмен веществ, рост, нормальное состояние тканей, кожи и роговицы глаза, кроветворение.

Тиамин. Как кофермент включается в ферменты углеводного обмена. Поддерживает нормальное состояние нервной системы, рост и развитие организма. Содержится в пивных дрожжах, рисовых отрубях, овсе, бобах, яичном желтке и др. Суточная потребность в тиамине составляет 2…5 мг на 100 кг массы тела.

Рибофлавин. Кофермент ферментов, участвующих в обмене аминокислот, жирных кислот, углеводов, обеспечивает рост тканей, кроветворение. Он принимает участие в световом и цветовом зрении. Поступает в организм с мясом, мясными продуктами, молоком, яйцами, фруктами и овощами, растительными кормами. Суточная потребность в витамине составляет 3…5 мг на 100 кг массы тела.

Никотиновая кислота. Входит в состав окислительно-восстановительных ферментов и обеспечивает нормальное течение углеводного и белкового обмена, стимулирует рост организма, функцию желез внутренней секреции, обеспечивает клеточное дыхание. Никотиновая кислота содержится в зернах злаков, кормовых дрожжах.

Пиридоксин. Входит в состав ферментов белкового обмена, обеспечивающих дезаминирование и декарбоксилирование аминокислот, тем самым способствуя нормальному росту организма, деятельности центральной нервной системы, обмену веществ в коже; стимулирует кроветворение, обеспечивает нормальное течение беременности. Наилучший источник придоксина - кормовые и пивные дрожжи.

Цианкобаламин. Поступая в организм, образует комплекс с внутренним желудочным фактором кроветворения и стимулирует образование форменных элементов крови. Он включается в ферменты углеводного, жирового и белкового обмена. Обеспечивает синтез нуклеиновых кислот. Богатый источник витамина - белковые корма животного происхождения: рыбная, мясная, мясокостная мука и др.

Аскорбиновая кислота. Участвует в окислительно-восстановительных процессах. Обеспечивает нормальное состояние соединительной ткани, образование эндотелия кровеносных сосудов и нормальное функциональное состояние их, участвует в синтезе кортикостероидов - гормонов коры надпочечников, повышает сопротивляемость организма. Предшественник аскорбиновой кислоты в организме животных - глюкуроновая кислота, которая является продуктом окисления глюкозы. Образование ее происходит в почках. У человека, обезьян, морских свинок образование глюкуроновой кислоты не происходит, так как в их организме нет соответствующего фермента окисления - гулона-лактона. Таким образом, в организме животных глюкоза активно превращается до аскорбиновой кислоты.

В значительных количествах аскорбиновая кислота содержится в ягодах черной смородины, шиповника, лимона. В сутки необходимо для нормальной жизнедеятельности до 50 мг на 100 кг массы тела.

Пантотеновая кислота. Участвуют в обмене всех белков, жиров и углеводов, стимулируют рост оптимальное структурно-функциональное состояние печени, кожи. Витамина много в дрожжах, печени, яичном желтке.

Фолиевая кислота. Включается в ферменты синтеза нуклеиновых кислот, белков, гемопоэза. Стимулирует рост животных, функции половых желез.

Витаминоподобные соединения и антивитамины. Наряду с витаминами есть витаминоподобные соединения и антивитамины.

Витаминоподобные соединения. Стимулируют все виды обмена веществ, рост и развитие человека и животных. К ним относят биофлавоноиды, инозит, линоевая кислота, оротовая кислота, карнитин, парааминобензойная кислота и др.

Антивитамины. Находятся в конкурентных отношениях с витаминами: занимают их место в ферментах, переводя их в неактивную форму, или разрушают ферменты. Антивитаминами являются овидин, дикумарол, овомукоид и многие другие.

Регуляция обмена белков, жиров, углеводов, минеральных веществ, витаминов и воды

Регуляция обмена белков, жиров и углеводов имеет свои особенности, заключающиеся в том, что превращение и использование этих веществ в организме характеризуется генетически обусловленной высокой устойчивостью. Любое изменение концентрации этих веществ в крови воспринимается рецепторами сосудов и тканей, информация с них поступает в нервный центр обмена веществ. В нервном центре формируется программа действия, которая поступает ко всем тканям и органам по нервным волокнам и с помощью гормонов. Через симпатические нервы и гормоны тироксин, кортизол, кортикостерон, адреналин, норадреналин, глюкагон обеспечиваются процессы катаболизма. Через парасимпатические нервы - анаболитические процессы; подобное действие оказывают гормоны соматотропный, эстрогены, инсулин, пролактин и др.

Оптимальные для метаболизма концентрации минеральных веществ, воды и витаминов в крови и тканях поддерживают специальные механизмы регуляции, подобно таковым белков, жиров и углеводов.

Обмен энергии

Жизнедеятельность каждой клетки организма, поддержание ее структурной организации обеспечивается благодаря непрерывному использованию энергии. Источником энергии для животных являются белки, жиры и углеводы корма: 1 г углеводов корма при окислении в организме выделяет 4,1 ккал, 1 г жиров - 9,3 ккал, 1 г белков - 4,1 ккал.

1 ккал определяется как количество теплоты, необходимое для того, чтобы повысить температуру 1 г воды на 1°С. 1 ккал равна примерно 4,2 килоджоуля.

Обмен энергии включает в себя поступление энергии в организм, освобождение и превращение ее, распределение и использование в организме, рассеивание теплоты. Поступает энергия в организм в потенциальном виде в белках, жирах и углеводах. В процессе превращения белков, жиров и углеводов происходит освобождение энергии: часть в виде теплоты, другая часть используется для процессов синтеза, мышечной работы, продукции и др., но в конечном итоге и эта энергия также превращается в теплоту.

Освобождение, превращение, распределение и использование энергии. Освобождение энергии в организме происходит поэтапно. Вначале в пищеварительном аппарате при расщеплении белков, жиров и углеводов освобождается у моногастричных животных около 1% этой энергии, а у жвачных - 7…10%. Затем происходит превращение всосавшихся аминокислот, глюкозы, глицерина и жирных кислот путем окисления. При этом вначале в протоплазме клеток образуются три промежуточных продукта окисления: ацетилкоэнзим А, альфа-кеоглютаровая кислота, щавелево-уксусная кислота, при этом освобождается примерно 50% этой энергии. В дальнейшем при продолжающемся окислении образовавшихся трех продуктов в цикле трикарбоновых кислот освобождаются остальные 70% энергии, часть ее превращается в теплоту, а более 50% переходит в АТФ. Энергия АТФ используется для обеспечения всех процессов в организме.

Превращение и распределение энергии веществ принятого животным корма происходит следующим образом. В результате превращения веществ основная часть энергии как энергия переваримых веществ всасывается и как энергия всосавшихся веществ включается в обменные процессы в виде обменной энергии. Непереваренная часть питательных веществ и не всосавшиеся в кровь и лимфу вещества выводятся как энергия кала. У жвачных животных 7…16% энергии переваримых веществ теряется с газами, которые образуются в рубце, как энергия газа. Часть энергии всосавшихся веществ в обменных процессах не участвует и удаляется с мочой - энергия мочи.

Обменная энергия используется для обеспечения процессов в тканях:

связанных с поддержанием жизнедеятельности организма в состоянии покоя и натощак;

связанных с поиском, приемом и перевариванием корма, поддержанием температуры тела;

связанных с физической и умственной деятельностью у человека или с использованием на образование продукции и физической деятельностью у животных.

Количество усваиваемой энергии и обменной энергии в корме зависит как от его состава, так и от вида корма.

Определение количественных параметров обмена энергии. Для определения количественных параметров обмена энергии в организме используют методы прямой и непрямой калориметрии.

Метод прямой калориметрии - это непосредственное определение количества энергии в корме и рассеянного тепла с помощью физиологических калориметрических камер.

Метод непрямой калориметрии - это определение количества образованного и рассеянного тепла по количеству потребленного кислорода и соотношению его с выделенным диоксидом углерода. При этом определяют количество потребленного кислорода и количество выделенного диоксида углерода в единицу времени. Величина отношения объема выделенного диоксида углерода к объему потребленного кислорода называется дыхательный коэффициент. По дыхательному коэффициенту и количеству потребленного кислорода определяют количество освободившейся энергии.

Регуляция обмена энергии. Регуляция обмена энергии обеспечивается с рецепторов, которые воспринимают сдвиги генетически обусловленного энергетического баланса. Информация с рецепторов поступает в нервный центр обмена энергии, где формируется программа действия, которая передается по нервным волокнам и с помощью гормонов ко всем тканям и органам организма. Она обеспечивает приспособление энерго-субстратно-кофакторного соотношения, размеров освобождения и использования энергии в тканях к потребностям органов. Основную нагрузку несет симпатическая иннервация, которая повышает образование и использование энергии; парасимпатическая иннервация активирует образование АТФ; гормоны тироксин, трийодтиронин, катехоламины повышают энергетический обмен, глюкокартикоиды угнетают его. Повышение использования энергии вызывают половые гормоны.

Терморегуляция

Температура тела. Один из важнейших факторов, необходимых для обмена веществ, и ведущий фактор, обеспечивающий нормальный уровень тканевых процессов, - это температура тела. Она является фактором, определяющим скорость химических реакций и активность ферментов. Температура тела человека и животных поддерживается на постоянном уровне независимо от температуры окружающей среды: у человека около 36,5°С, у разных видов млекопитающих в пределах 37,5…40,0°С, а у птиц - 40,5…43,0°С. Такая температура оптимальна для ферментативных процессов в тканях.

Температура тела на постоянном уровне поддерживается за счет определенных для различных условий соотношений двух процессов: теплопродукции и теплоотдачи.

Теплопродукция. Это образование теплоты в организме, происходящее непрерывно в процессе обмена веществ и энергии. В организме три источника теплоты. Это теплота, образующаяся: 1) при постоянных затратах энергии; 2) при переменных затратах энергии и 3) при затратах на синтез продукции. Наибольшее количество теплоты образуется в органах с интенсивным обменом веществ и большой массой - печени и мышцах. При мышечной работе химическая энергия только на треть переходит в механическую работу, остальные две трети переходят в теплоту.

Теплопродукция может увеличиваться в 3…5 раз за счет активации ферментных окислительных реакций и терморегуляционной активности мышц. За счет повышения тонуса мышц при необходимости значительно увеличивается образование теплоты.

Теплоотдача. Это отдача теплоты в окружающую среду. Она происходит в основном четырьмя путями: теплоизлучением, конвекцией, теплопроведением и испарением жидкости с поверхности кожи, слизистой оболочки дыхательных путей, языка. Небольшое количество теплоты теряется с мочой и калом.

Теплоизлучение сводится к отдаче теплоты путем инфракрасного излучения. Конвекция - это переход теплоты с поверхности кожи в поток воздуха. Теплопроведение - это отдача теплоты предметам, соприкасающимся с телом. Факторы, определяющие размеры отдачи теплоты, следующие: величина разницы температур кожи и окружающей среды, теплопроводность, движение воздуха, размеры поверхности тела. Теплопроведение и теплоизлучение тем выше, чем больше разность между величинами температуры кожи и температуры окружающей среды. Если разность температур равна 0°С, то отдача теплоты путем теплопроведения и теплоизлучения прекращается.

Испарение - это отдача теплоты с потом и выдыхаемым воздухом. На испарение 1 мл пота затрачивается 0,58 ккал. Испарение является единственным путем отдачи теплоты при температуре окружающей среды, равной или незначительно меньшей температуры тела. Степень испарения зависит от температуры окружающей среды и влажности воздуха. Чем выше температура окружающей среды и меньше влажность воздуха, тем больше испарение, и наоборот. Потоотделение происходит и в связи с физическим напряжением. Отдача теплоты при потоотделении у разных видов животных различна и зависит от степени развития и количества потовых желез; хорошо развиты они у лошади.

У животных имеются и механизмы, препятствующие чрезмерному рассеиванию теплоты с кожи, - волосяной покров, перья, подкожный жировой слой и регуляторные механизмы, обеспечивающие приспособительные изменения их состояния. Температура окружающей среды, при которой животное не испытывает ни тепла, ни холода, называется комфортной. Для разных животных она различна и в среднем находится в пределах от 14 до 25°С. Однако для молодняка, особенно поросят и цыплят, она выше - 30…35°С, а для телят ниже - 5…16 С.

Регуляция теплообразования и теплоотдачи

В комфортных условиях тепловой баланс не нуждается в коррекции. Деятельность механизмов поддержания оптимальной температуры тела проявляется при появлении тенденции к снижению или повышению температуры тела в связи с понижением или повышением температуры окружающей среды и недостаточностью или избытком теплопродукции и теплоотдачи. При этом возбуждаются терморецепторы гипоталамуса, сосудов и тканей, терморецепторы кожи. Информация с них поступает в нервный центр, где формируется программа действий, которая поступает к органам теплообразования или теплоотдачи. Они осуществляют свою деятельность, обеспечивая постоянство температуры тела.

При понижении температуры окружающей среды через симпатическую иннервацию и увеличение выработки тироксина, адреналина, кортикостероидов, обеспечивается сначала повышение окисления углеводов, жиров и белков, возрастание теплопродукции в печени, повышение тонуса скелетных мышц; при значительной холодовой нагрузке могут появиться непроизвольные сокращения скелетных мышц - дрожание, что ведет к повышению теплообразования. Одновременно происходит сужение кровеносных сосудов кожи, а значит, и понижение ее температуры, уменьшение величины разницы температур кожи и воздуха и соответственно снижение потери теплоты теплопроведением и теплоизлучением. Включаются дополнительные механизмы теплорегуляции - уменьшения поверхности тела, поднятия волос.

При повышении температуры окружающей среды и при повышенном образовании теплоты из-за температурной рецепции в нервном центре формируется программа, которая обеспечивает противоположные приспособительные реакции, изменения деятельности органов, а также усиление функции потовых желез, учащение дыхания.

Страницы: 1, 2


ИНТЕРЕСНОЕ



© 2009 Все права защищены.