бесплатно рефераты
 

Микро- и макровзаимодействия в природе

p align="left">7. Какие органические вещества входят в состав клетки? Какие органические веществ являются самыми распространёнными на Земле? Охарактеризуйте, какие функции в клетках выполняют органические вещества

7. 2

Углеводы; Жиры

В своём составе клетки живых организмов содержат органические соединения - биополимеры. Это высокомолекулярные природные соединения, участвующие во всех процессах жизнедеятельности организма. Биополимеры включают в себя белки, липиды, нуклеиновые кислоты, углеводы. Органические вещества занимают 20-30% массы клетки, и помимо главных биополимеров в её составе присутствует ряд небольших молекул: гормонов, пигментов, АТФ и множество других.

Самыми распространёнными на Земле являются простейшие органические соединения - углеводороды, содержащие только углерод и водород. Однако, наряду с ними достаточно распространены углеродные соединения, в состав которых входят и другие элементы (кислород, сера, азот). К примеру - диоксид углерода , представленный в атмосфере планеты 1% общего объёма.

В составе клеток всех живых организмов углеводы имеют широчайшее распространение. Это органические соединения, состоящие из углерода, водорода и кислорода. В их большинстве, как правило, водород и кислород находятся в тех же соответствиях, что и в воде (отсюда название - углеводы). Общая формула таких углеводов .

Важнейшая функция углеводов - энергетическая.

Ведь именно они служат основным источником энергии для организмов, питающихся органическими веществами.

К примеру, один из наиболее распространённых углеводов - глюкоза. Являясь простым сахаром, из нескольких остатков она образует уже сложные сахара (диа и полисахариды).

Так, в состав молока входит молочный сахар (диасахарид), а он занимает место основного источника энергии для детёнышей всех млекопитающих Земли.

Также углеводы являются строительным материалом многих организмов (клеточная стенка растений в основном состоит из полисахарида целлюлозы) и выполняют запасающую функцию, накапливаясь в качестве резервного продукта клеток.

Липиды (жиры) клеток достаточно разнообразны по структуре.

Тем не менее, всем им принадлежит одно общее свойство: они труднорастворимы.

Следовательно, и растворяются липиды в таких жидкостях, как хлороформ, эфиры, органические растворители, но практически нерастворимы в воде.

При окислении жиров в клетке образуется большое количество энергии, которая расходуется на различные процессы.

В этом заключается энергетическая функция липидов.

Излишки же попавших в организм жиров имеют свойство накапливаться в клетках и служить запасным питательным веществом, а у многих млекопитающих жировая прослойка является ещё и защитой от переохлаждения.

Помимо вышеуказанных функций, некоторые липиды являются гормонами и принимают участие в регулировании физиологических процессов организма.

А липиды, содержащие фосфор, составляют основу клеточных мембран; то есть выполняют структурную функцию.

8. Объясните значение следующих терминов и понятий

8. 2

Адроны; Витамин; Ген; Гравитон; Изотропность; Интерпретация; Корпускула; Космос; Нейтрино; Парадигма.

АДРОНЫ (от греческого hadros - большой, сильный) - элементарные частицы, принимающие участие в сильном (короткодействующем, в размерах ядра) взаимодействии. В настоящее время к классу адронов относят порядка трёхсот элементарных частиц. В значении от значения спина, данные частицы делятся на две группы: мезоны (от греч. meso - средний), и барионы (от греч. barys - тяжёлый). В свою очередь, в группе барионов выделяются нуклоны (протоны и нейтроны), и гипероны. Адроны являются составными частицами. Так, нуклоны состоят из трёх фундаментальных, электрически заряженных частиц, называемых кварками. Экспериментальное подтверждение данного тезиса было получено в 1969 году в Стэнфорде.

ВИТАМИН (по словарю Ожегова) - органическое вещество, первоисточником которого обычно служат растения, необходимое для нормальной жизнедеятельности организма, а также препарат, содержащий такие вещества). Слово «витамин» образовано от греческих «вита» и «аимн», что значит жизненная кислота. Витамины - участники химических процессов в теле. Организм не может их синтезировать самостоятельно, а получает с пищей. Витамины подразделяются на группы, обозначенные латинскими буквами А, B, C…, и для нормальной жизнедеятельности человеку необходимо 13 витаминов. Особенно важны два из них: витамин С, при недостатке которого он заболевает цингой, и витамин D, необходимый для нормального развития костей и зубов.

ГЕН - элементарная единица наследственности, представляющая собой внутриклеточную молекулярную структуру, участок молекулы ДНК. По химическому составу, гены - нуклеиновые кислоты, в основе которых главную роль играют азот и фосфор. Как правило, гены располагаются внутри ядер клеток (в хромосомах) и имеются в каждой клетке. Общее их количество в крупных организмах достигает миллиардов, а совокупность всех генов организма называется генотипом. В генах фиксируются все признаки и свойства организма, передающиеся по наследству.

ГРАВИТОН - квант гравитационного поля ( поля тяготения), который является переносчиком гравитационного взаимодействия. Гравитон обладает нулевой массой покоя, спиновым числом 2 (в единицах постоянной Планка), электрически нейтрален. Экспериментально пока не обнаружен.

ИЗОТРОПНОСТЬ - инвариантность физических законов относительно выбора осей координат системы отсчёта (относительно поворота замкнутой системы в пространстве на любой угол). Или же независимость свойств среды или вещества от направления.

ИНТЕРПРЕТАЦИЯ - истолкование, разъяснение смысла какой-либо знаковой системы (символа, выражения, текста). Либо - ретрансляция явления в преломлении через мировоззрение очевидца.

КОРПУСКУЛА - очень малая частица вещества. Данное понятие является специфическим научным термином и используется преимущественно в физике (например - корпускулярная теория света).

КОСМОС (от греческого кохток - вселенная) - понятие, впервые введенное Пифагором для обозначения единства мира в противоположность хаосу. Главным свойством космоса считалась гармония сфер. В истории философской мысли использование данного понятия вело либо к признанию роли творца (демиурга), либо к обожествлению самого космоса в виде пантеизма или космотеизма. С развитием космонавтики понятие космоса стало соизмеряться с освоенной человеческой частью солнечной системы и Вселенной.

НЕЙТРИНО (от итальянского neutrino- нейтрончик) - электрически нейтральная элементарная частица, возникающая при бета-распаде, которая приобретает импульс и уносит с собой часть энергии распада. Спин нейтрино направлен противоположно его импульсу (направлению скорости движения) . В сильном взаимодействии нейтрино не участвует, и его гравитационная масса крайне мала (менее 1/20 000 массы электрона). Зато длина свободного пробега нейтрино с энергией 1 МэВ составляет около 1000 световых лет, и его энергии хватает, чтобы свободно пронзить солнце.

ПАРАДИГМА (от греческого pаradeigma - пример, образец) - понятие, получившее особенно широкое распространение после работ современного американского историка науки Т. Куна. Означает совокупность теоретических, методологических и иных установок, принятых научным сообществом на каждом этапе развития науки, которыми руководствуются в качестве образца (модели, стандарта) при решении научных проблем. Как определенный «набор» предписаний (регулятивов), каждая парадигма включает в себя следующие элементы: символические (знаковые) обобщения, философские компоненты, ценностные установки, схемы решения конкретных задач (головоломок). Понятие парадигмы уточняется с помощью понятия «дисциплинарная матрица», выражающего не только принадлежность ученых к. данной научной дисциплине, но и систему методов, приемов, норм их исследовательской деятельности.

9. Объясните устойчивость биосферного уровня. Опишите круговорот одного из биогенных элементов

9. 2

Азот

В учении Вернадского о биосфере проводится разделение вещества на несколько различных, хотя и геологически взаимосвязанных типов:

- Живое вещество: вещество, образованное совокупностью организмов;

- Биогенное вещество. Создаётся и перерабатывается организмами в процессе их жизнедеятельности (нефть, уголь, известняки, атмосферные газы и прочие соединения);

- Косное вещество. Образуется без участия живых организмов (продукты тектонической или эрозионной деятельности планеты, космические тела);

- Биокосное вещество. Вещество, образующееся в результате совместной деятельности живых организмов и абиогенных факторов (водная среда, почва).

Согласно данному учению, всё живое и неживое вещество биосферы связано между собой биогеохимическими циклами. А под ними можно понимать процесс обмена веществом и энергией между компонентами биосферы, носящими устойчивый циклический характер и обусловленными жизнедеятельностью живых организмов, поглощающих из внешней среды одни вещества и выделяющих в неё другие.

Таким образом, основа организации и устойчивости биосферного уровня кроется в двух причинах:

- многообразие живых организмов;

- бесконечный круговорот важных для живых веществ биогенных элементов (кислород, углерод, сера, кальций, фосфор и другие).

Для понимания устойчивости биосферы, её современного уровня, биохимические циклы основных для жизнедеятельности организмов элементов являются ключевыми. Их круговорот мы рассмотрим на примере азота.

Название химического элемента «азот» происходит от греческого слова «azoos» - безжизненный, по-латыни Nitrogenium. Химический знак элемента - N. Азот - элемент V группы периодической системы Менделеева, порядковый номер 7, относительная атомная масса 14,0067; бесцветный газ, не имеющий запаха и вкуса.

Соединения азота - селитра, азотная кислота и аммиак - были известны задолго до получения азота в свободном состоянии. В 1772 году Д. Резерфорд, сжигая фосфор и другие вещества в стеклянном колоколе, показал, что остающийся после сгорания газ, названный им «удушливым воздухом», не поддерживает дыхания и горения. В 1784 году Г. Кавендиш доказал, что азот входит в состав селитры; отсюда и происходит латинское название азота (от позднелатинского «nitrum» - селитра и греческого «gennao» - рождаю, произвожу). А химическая инертность азота в свободном состоянии и исключительная роль его в соединениях с другими элементами в качестве связанного азота.

Азот - один из самых распространенных элементов на Земле, причем основная его масса (около 4х1015 тонн) сосредоточена в свободном состоянии в атмосфере. В воздухе свободный азот (в виде молекул N2) составляет 78,09% по объему (или 75,6% по массе), не считая незначительных примесей его в виде аммиака и окислов. Среднее содержание азота в литосфере 1,9х10-3% по массе. Природные соединения азота - хлористый аммоний NH4CI и различные нитраты.

Хотя название «азот» означает «не поддерживающий жизни», на самом деле это один из самых необходимых для жизнедеятельности элемент. Азот входит белок животных и человека, а содержится там его до 16-17%.

В организмах плотоядных животных азот образуется за счет потребляемых белковых веществ, имеющихся в организмах травоядных животных и растениях. Растения же синтезируют белок, усваивая содержащиеся в почве азотистые вещества, главным образом - неорганические. Значительные количества азота поступают в почву благодаря азотфиксирующим микроорганизмам, способным переводить свободный азот воздуха в соединения азота. Или в процессе разложения животных останков с выделением аммиака и образованием нитратов, используемых бактериями. Данные соединения частично восстанавливаются до элементарного азота и возвращаются обратно в атмосферу.

Главную роль в природном круговороте азота играют микроорганизмы - нитрофицирующие, денитрофицирующие, азотфиксирующие и другие. Однако в результате извлечения из почвы растениями огромного количества связанного азота (особенно при интенсивном земледелии) она оказывается обедненной. Дефицит азота характерен для земледелия почти всех стран, наблюдается он и в животноводстве («белковое голодание»). Ведь на почвах, бедных доступным азотом, растения плохо развиваются.

10. Сопоставьте естественнонаучную и гуманитарную культуры

10. 2

Характерные черты науки

Система научных знаний о природе, обществе и мышлении, взятых за единое целое, представляет собой весьма сложное, обладающее различными сторонами и связями явление. Этим и обусловлено её место в общественной жизни, как неотъемлемой части духовной культуры человечества.

Система научных знаний имеет:

Предмет и цели;

то есть, естественнонаучную и связанную с ней гуманитарную культуры, их материальные носители, взаимовлияние, внутреннюю структуру и генезис. При этом изучению подвергаются не только явления и закономерности общего характера, но и специфические нюансы, касающиеся лишь отдельных сторон научного знания.

Собственные закономерности и особенности развития;

С учетом специфики науки, это:

а) Обусловленность практикой.

б) Относительная самостоятельность.

в) Преемственность в развитии идей и принципов.

г) Постепенность развития.

д) Взаимодействие наук и взаимосвязанность всех отраслей естествознания.

е) Противоречивость в развитии.

Методы научного познания, среди которых можно выделить:

а) Эмпирическую сторону знаний.

б) Теоретическую сторону знаний.

в) Прикладную сторону знаний.

В мировоззренческом плане, наука, как единая система познаний обо всём сущем, играет фундаментальную роль, и в конкретный исторический период определяет один из сегментов культуры - доминирующую систему взглядов общества на окружающий мир. Также, на определённых этапах общественного развития именно научная мысль формирует и методологию познания в целом.

Сами знания человечества можно разделить на отрасли, в каждой из которых выделить конкретные направления. Так, научные познания могут подразделяться на:

естественные (физика, химия, биология и т.д.)

технические (машиностроительные, архитектурные, микроэлектроника и т.д.)

социальные и гуманитарные (культурологические науки, социологические, политологические и т.д.)

Как видно из приведенной выше классификации, знания в области физики, химии, биологии и связанных с ними наук формируют блок естественных познаний человечества о природе. И в силу этого, играют решающую роль в заполнении сферы мировоззрения, совокупно с которой воссоздают соответствующее эпохе видение картины мира. А с учетом развития других отраслей знаний, естественная наука уже формирует всю культурную надстройку общества, её мировоззрение.

Хотя, изучение становления и развития материального мира имеет не только мировоззренческое значение, но и познавательное. Поэтому синтез современных концепций физической картины мироздания закладывает базис для качественных шагов в её познании, а отсюда - ведёт и к совершенствованию гуманитарной культуры в целом.

Понятие «научная картина мира» стало широко использоваться с конца XIX века, а история науки стоит в неразрывной связи с историей общества. Следовательно, каждому типу и уровню развития цивилизации, её культуры, производительных сил, техники, соответствует своеобразный период в развитии науки и господствующих взглядов на картину мира.

Научно-техническая революция, развернувшаяся в последние десятилетия, внесла много нового в наши представления о естественнонаучной концепции мироздания. К примеру, возникновение системного подхода позволило взглянуть на окружающий мир, как на единое, целостное образование, состоящее из огромного множества взаимодействующих друг с другом систем. С другой стороны, прогресс науки дал возможность представить его в виде совокупности самоорганизующихся процессов, а интеграция современных научных знаний с гуманитарной культурой перешла в разряд наиболее точного пояснения закономерностей глобального мирового развития. Соответственно, характерные черты науки на современном этапе могут проявляться во многих формах:

в организации исследований на стыке смежных научных дисциплин, где большинством и скрываются наиболее интересные или многообещающие научные проблемы;

в разработке научных методов, имеющих значение для многих сфер познания (спектральный анализ, хроматография, компьютерный эксперимент);

в поиске «объединительных» теорий и принципов, к которым можно было бы свести бесконечное разнообразие явлений природы (гипотеза «Великого объединения» всех типов фундаментальных взаимодействий в физике, глобальный эволюционный синтез в биологии, физике, химии и.т.д.);

в разработке теорий, выполняющих общеметодологические функции в науке (общая теория систем, кибернетика, синергетика);

в изменении характера решаемых современной наукой проблем - они все больше становятся комплексными, требующими участия сразу нескольких дисциплин (экологические проблемы, проблема возникновения жизни и прочие общемировые проблемы).

Таким образом, дифференциация и интеграция в развитии современного научного познания - вовсе не взаимоисключающие, а лишь взаимодополняющие тенденции. Являясь элементом гуманитарной культуры, её весомой составляющей, устремлённая в будущее наука наших дней служит и фундаментом для её дальнейшего развития. Ведь не секрет, что именно сейчас мы используем в повседневности всё больше специальных научных терминов и достижений научно-технического прогресса. Ещё нам стали гораздо ближе и доступней, как многие непонятные раньше научные открытия, так и проблемы. Жизнь становится совершеннее, а обязательная обратная сторона любого усовершенствования - усложнение. Казалось бы, познавать мир становится всё немыслимей, но на помощь человеку приходит наука.

Отсюда, главные черты науки начала XXI века: с одной стороны - её глобализация с взаимопроникновением и объединением тех отраслей, которые ещё недавно считались абсолютно несовместимыми. А с другой - всё большая популяризация и интеграция в общегуманитарную культуру.

Библиографический список

1. Карпенков С.Х. Концепции современного естествознания: Учебное пособие для вузов / С.Х. Карпенков. - М.: Юнити, 1998. - 208 с.

2. Грушевицкая Т.Г. Концепции современного естествознания: Учебное пособие/ Т.Г. Грушевицкая, А.П. Садохин. - М.: Высшая школа, 1998. - 383 с.

3. Акимова Т.А. Экология: Учебное пособие для вузов / Т.А. Акимова, В.В. Хаскин. - М.: ЮНИТИ-ДАНА, 2000. - 566 с.

Страницы: 1, 2


ИНТЕРЕСНОЕ



© 2009 Все права защищены.