бесплатно рефераты
 

Лесной тип биологического круговорота

p align="left">

Общая система описания биологического круговорота включает в себя ряд последовательных направлений, соответствующих происходящим процессам. Несомненно, процессам придается исключительное значение, особенно на первоначальном, описательном этапе исследования круговорота. В рамках круговорота описание процессов касается разных уровней организации биосферы. Предложено выделять обменные процессы в биогеоценозах суши, а также общие этапы трансформации, которые включают в себя ряд последовательных и взаимосвязанных процессов от синтеза органического вещества растительностью - до этапа минерализации органического вещества почвы. Вторая группа описания круговорота состоит из численных показателей, фактически количественно отражающих проявления различных процессов. В самом общем виде в системе показателей используются четыре равноценных подгруппы. Первая из них отражает все особенности продукционно-деструкционных процессов. Вторая подгруппа - включает в себя химический состав отдельных компонентов биогеоценоза. Третья подгруппа показателей объединяет использование энергетических характеристик в биологическом круговороте. Четвертая подгруппа - это показатели, отражающие время круговорота (Богатырев, 2005).

Основные показатели биологического круговорота подразделяются на три группы. Первая группа объединяет те из них, которые характеризуют продуктивность наземных экосистем. Эти показатели относятся к числу фундаментальных и только на их основании можно составить представле-ние не только о структуре и функционировании наземных экосистем, но и о направленности биологического круговорота. Продуктивность - это способность живых организмов создавать, трансформировать и консервировать органическое вещество. Установлено, что значительная часть солнечной энергии расходуется на транспирацию, и только от 0,8-1,0% - на фотосинтез (табл. 2)

Таблица 2 -

Показатели продуктивности некоторых зональных растительных сообществ

Показатель

Пятнистые дриадово-моховые тундры (Таймыр)

Ельники Валдая (80 лет)

Луговая степь (Тамбовская

низменность)

Фитомасса, г/м2 сухого вещества

1958

36400

2530

Продуктивность, г/м2 в сутки

0,4

4,6

2,9

Опад, г/м2

9

612

1060

Подстилки; опад зеленой массы

13

6

1

Надземная фитомасса; подземная фитомасса

0,12

4,0

0,17

Фотосинтезирующая масса; нефотосинтезирующая масса

0,04

0,02

0,15

Фотосинтезирующая часть прироста; нефотосин-тезирующая часть прироста

0,17

0,30

0,45

Вторая группа показателей, которые широко используются при характери-стике биологического круговорота - это данные о химическом составе живых организмов. При изучении биологического круговорота существенное значение уделяет-ся таким важнейшим макроэлементам как кальций, магний, кремний и ряд дру-гих. Особенно важное значение принадлежит азоту.

Третья группа показателей круговорота может быть основана на энергети-ческих величинах. Расчеты показывают, что во всей биомассе суши заключено около 4 х 1016 МДж. Максимальные величины сосредоточены в экваториальных и североамериканских лесах из секвойи и пихты Дугласа, где эти величины, соответственно, составляют от 800 до 1700 МДж/м. В таежных лесах эти показатели снижаются до 500 МДж/м, а в широколиственных лесах возрастают до 650 МДж/м. Обращает на себя внимание, что эти величины впол-не сопоставимы с тем количеством, которое аккумулируется в гумусе почв. В частности, в типичных черноземах сосредоточено около 1000 МДж/м, значи-тельно больше сосредоточено потенциальной энергии в торфах (Васильевская, Богатырев, 2003).

2.2. Классификации круговоротов

Заключительным этапом при изучении биологического круговорота (БИК) является классификация, которая сводится к упорядочению полученного материала, определению специфики происходящих в БИК процессов и последующему установлению характерных особенностей циклов внутри од-ной почвенно-биоклиматической зоны или сопоставлению экосистем в зо-нальном аспекте.

Все разнообразные классификации учитывают положение изученного БГЦ в системе почвенно-биоклиматических зон. Вторая особенность классификаций со-стоит в том, что критерии для классификации выбираются на эмпирической осно-ве. Несомненно, что большинство из них важные, но являются ли они существен-ными, т.е. достаточными, чтобы отличать БГЦ друг от друга, не всегда ясно. Не-которые показатели БИКа для различных географических зон перекрываются (Васильевская, Богатырев, 2003).

Наиболее широко используемой группой являются данные по продуктивно-сти. Придавая исключительную роль показателям продуктивности, Бази-левич (1986) использовала их для оценки структуры и функции наземных экоси-стем (табл. 26).

Из-за зависимости этих показателей от гидротермического режима, группи-ровка зональных экосистем в таксоны высокого ранга осуществляется в преде-лах биоклиматических областей одного термического пояса. Для характеристи-ки структуры семейств экосистем используются два критерия: запасы живой фитомассы и запасы мертвой массы, без учета гумуса и торфа.

Основные закономерности структуры экосистем и функционирования сво-дятся к следующим положениям:

1) изменение величины годичной продукции экосистем по зонам описывает-ся двухвершинной кривой; 2) для интразональных переувлажненных экосистем с севера на юг наблюдается непрерывное возрастание величины годичной продукции; 3) отношение мортмассы к годичной продукции подчине-но строгой закономерности, включая зональные и интразональные экосисте-мы; 4) наибольшие скорости оборота характеризуют экосистемы суббореального и субтропического поясов, что связано, прежде всего, с тепловым балансом земной поверхности.

Показатели продуктивности положены в основу классификации ландшаф-тов. Так Перельман и Касимов (1999) используют два критерия: биомассу и продук-тивность. Таксономия классификации включает группы, типы, семейства. Груп-пы ландшафтов определяются по принадлежности к зоне (тундровая, лесная, степная и т.д.). В ряде случаев выделение групп обусловлено другими фактора-ми, включая позональное их размещение (например, верховые болота в таеж-ной зоне, соровые солончаки в пустынной и т.д.).

В основу выделения типа биогенного ландшафта положен коэффициент К, выводимый из параболической зависимости П = БК, где П - ежегодная про-дукция, Б - общая биомасса. Для таежной зоны К = 0,54-0,55; для широколи-ственных лесов - 0,58-0,60; для влажных степей - 0,81. Коэффициент К посто-янен при различных величинах П и Б. Тип ландшафта в целом соответствует типам растительного покрова. Внутри ландшафтов, характеризующихся раз-личными биомассой и продукцией, но близким соотношением между ними, выраженным коэффициентом к (П/Б), выделяют три семейства. Например, в пределах таежной зоны выделяются северное, среднее и южное (Васильевская, Богатырев, 2003).

В детальной и получившей наибольшую известность классификации круго-ворота элементов Н.И. Базилевич используется шесть признаков: 1) при-надлежность БГЦ той или иной зональной единице; 2) показатели структуры фитомассы: а) биомасса растений, б) годичный прирост, в) спад, г) истинный прирост, д) подстилка; 3) показатели интенсивности круговорота, устанавлива-емые по отношению величины запаса подстилки к величине опада; 4) характер сочетаний химических элементов, потребляемых на построение годичного при-роста или возвращаемых с годичным приростом. Типизацию химизма обменных процессов производят по двум ведущим элементам с указанием сопутствующих элементов. Группы типов химизма обменных процессов объединяют в классы по одному преобладающему элементу; 5) величина средней зольности прирос-та - спада оценивается по средневзвешенному содержанию зольных элементов в 100 г прироста - спада (в %); 6) показатели емкости БИКа оцениваются по ве-личине ежегодно потребляемых на построение прироста (возвращаемых с спа-дом) зольных элементов и азота (в кг/га). В целях унификации принята десяти-балльная шкала числовых показателей.

3 Лесной тип биологического круговорота

3.1. Различия степных и лесных экосистем

Энергетические затраты на первичную продукцию и в целом на биогеоценотические процессы возрастают от среднетаежных растительных формаций к подтайге и широколиственным лесам, а затем снова уменьшаются по направлению к южной лесостепи и северной степи. Максимальное количество энергии используется в хвойно-широколиственных и неморальных лесах, а также в южнотаежных пихтово-ельниках и сосняках.

Аналогичная картина свойственна энергетике групп почв. Практически вся плеяда дерново-подзолистых и серых лесных почв отличаются наибольшими суммарными затратами энергии на почвообразование, между тем как южные черноземы и темно-каштановые почвы развиваются в условиях минимальных затрат.

Стационарные ландшафтно-геофизические эксперименты позволяют выявить причинные механизмы различий между лесными и лугово-степными экосистемами. Так, в одних и тех же зональных условиях типичной лесостепи коэффициент эффективности использования (поглощения) фотосинтетически активной радиации в снытьевой дубраве в два с лишним раза выше, чем в некосимой степи. Кроме того, в лесу имеет место четырехкратное повышение транспирационного коэффициента фитобиоты. Очевидно, более сложная фитоценотическая структура, а также более интенсивная транспирация требуют и больших энергетических затрат. Однако при относительно низком уровне поглощения солнечной энергии травянисто-степная экосистема использует ее более эффективно благодаря тому, что у нее практически выпадает целое звено биологического круговорота - создание скелетной (древесной) многолетней фитомассы, изымающие из годового цикла значительную часть чистой продукции. В результате малый биологический круговорот становится проще, интенсивнее и более замкнут. Образно говоря, с точки зрения устойчивости метаболизма в одних и тех же зональных условиях, допускающих одновременное существование степной и лесной растительности, степь оказывается энергетически более выгодной экосистемой, чем лес (Коломыц, 2003).

3.2. Биологический круговорот в таежных сообществах

В растительности бореальных и суббореальных лесов сосредото-чена значительная часть живого вещества планеты -- около 700*106 т сухой массы. Биомасса, приходящаяся на единицу площади раз-ных типов лесов, колеблется от 10*103 до 30*103 т/км2. Масса прироста (ежегодной продукции) в хвойных северотаежных лесах составляет около 450 т/км2 в год, в хвойных и смешанных лесах южной тайги -- 800 т/км2 и более, в широколиственных суббореальных лесах -- до 900 т/км2.

Общая биогеохимическая особенность рассматриваемых лесных экогеосистем -- продолжительное задерживание поглощенных хими-ческих элементов в живом веществе. По этой причине общая био-масса на единице площади лесного фитоценоза от 20 до 50 раз больше массы прироста. Замедленность движения масс элементов в системе биологического круговорота в лесных экогеосистемах уси-ливается тем, что основная часть биомассы (около 80%) находится над почвой, и отмирающие части растений опадают на ее поверх-ность и образуют обильную лесную подстилку.

Микробиологическая деятельность в почвах лесов протекает весьма напряженно, причем наряду с бактериями и актиномицетами особо важную роль играют грибы, активно разлагающие углеводы, из которых преимущественно состоят продукты опада лесной расти-тельности. Из-за длительного холодного сезона, подавляющего микробиологическую деятельность, полного разрушения опадаю-щих частей растений не происходит. По мере увеличения длитель-ности холодного зимнего сезона масса неразложенных растительных остатков возрастает с юга на север от 1500 т/км2 сухого органичес-кого вещества широколиственных лесов до 8000--8500 т/км2 северо-таежных лесов.

Неотъемлемой частью зоны лесов Мировой суши являются боло-та. В некоторых регионах, например на территории обширной Западно-Сибирской низменности, ландшафты болот и заболочен-ных местностей составляют более 1/3 всей площади. В ландшафтах болот существует совершенно особая биогеохимическая ситуация. Замедленность биологического круговорота масс химических эле-ментов, свойственная всем бореальным лесным экогеосистемам, еще сильнее выражена в экогеосистемах болот. В наиболее распростра-ненном типе болотных фитоценозов -- сфагновых болотах -- годовая продукция составляет примерно 10% от живой биомассы и доли процента от массы мертвого органического вещества торфа.

В северных вариантах лесных фитоценозов количество некото-рых химических элементов в мертвом органическом веществе лес-ной подстилки больше, чем в живой биомассе. В смешанных и лиственных лесах количество элементов в подстилке меньше, чем в биомассе, хотя абсолютное значение масс элементов в подстилке весьма большое. Таким образом, кроме значительного количества элементов в живой массе растительности имеется их большой запас в органическом веществе лесных подстилок. Замедленность цикла массообмена в процессе фотосинтеза -- деструкции органического вещества обусловливает торможение миграции масс элементов в системе почва -- растительность. Заторможенность биологического круговорота элементов усиливается по мере усиления бореальности окружающей среды (Добровольский, 1998).

По обобщенным данным Родина и Базилевич (1965) полновозрастные ельники плакоров северной, средней и южной тайги имеют биомассу соответственно около 100 т/га, 250 т/га, 350 т/га, т. е. можно полагать, что с изменением климатических условий и, прежде всего фотосинтетической активной радиации запасы биомассы возрастают более, чем втрое.

Исследования Гришиной (1974) на Валдае показали, что при движении по катене от элювиальных к аккумулятивным ландшафтам происходит увеличение биомассы, однако в случае заболоченности аккумулятивного ландшафта происходит снижение биомассы.

Структура фитомассы древостоев характеризуется резким превышением надземной многолетней части над корнями. В молодых ельниках и сосняках это соотношение можно выразить как 2:1, а в спелых древостоях - 3:1, 4:1. Максимальную продукцию древостои создают в возрасте от 30 до 60 лет. Прирост в этот период может достигать 15-20 т сухой массы на гектар в год (Гришина, 1974).

Для хвойных древостоев, так же как и для тундровых растительных ассоциаций характерно высокое содержание азота (вслед за С, О, Н). Количество его в лесном ценозе превышает сумму зольных элементов. В листве подлеска, в хвое, тонких ветвях и корнях азота больше, чем любого минерального элемента, и лишь в стволе и крупных ветвях он уступает первенство по кальцию. В хвойных фитоценозах наибольшую зольность имеют травянистые растения. Например, пролеска - 15,3%, кислица - 11,59%, папоротник - 7,38%, затем следуют листья пролеска, затем хвоя.

Безусловно, среда обитания и тип леса, характер подлеска и напочвенного покрова будут накладывать отпечаток, и вызывать некоторые изменения в последовательности накопления элементов. Как отмечает Гришина (1974) контрастность биологического круговорота в одной зоне может быть не менее значительной, чем в фитоценозах на плакорах в различных подзонах тайги.

Приведенные данные характеризуют общие черты распределения и миграции масс в растительности зоны бореальных и суббореальных лесов. В каждом конкретном регионе и типе экогеосистем имеются свои особенности. В качестве примера рассмотрим структуру и динамику биологического круговорота в сосняках Европейского Севера.

Анализ величины и структуры общего запаса, прироста, теку-щего изменения и отпада фитомассы, а также потребления, закреп-ления и возврата элементов почвенного питания в насаждениях сосняков брусничного и черничного позволяет отметить ряд особен-ностей их формирования фитомасса возрастает примерно в 10 раз. При этом на одних и тех же возрастных этапах количество фитомассы древостоя в сосняке черничном больше по сравнению с сосняком брусничным на 25-30%. С улучшением экологических условий ускоряется процесс развития древостоя, т.е. раньше происходит смыкание крон, раньше наступа-ет кульминация текущего прироста, текущего изменения запаса и отпада фитомассы древостоя, раньше начинается распад древостоя и все эти процессы протекают гораздо интенсивнее. С ухудшением лесорастительных условий в фитомассе древостоя увеличивается от-носительное содержание хвои, корней и в небольшой степени ветвей и уменьшается доля стволов. Эти факты можно объяснить специфи-кой структурных адаптаций, как отдельных особей, так и древостоя в целом к характеру лесорастительных условий.

Доля живого напочвенного покрова в обшей фитомассе насаж-дения в лучших лесорастительных условиях по сравнению с худшими меньше на начальном и конечном этапах формирования насажде-ния, что связано с различием эдафических факторов, факторов мик-роклимата под пологом древостоя и различным видовым составом напочвенного покрова.

К возрасту биологической спелости (начало распада) общая продуктивность насаждения сосняка брусничного составляет 994 т, сосняка черничного 1272 т органического вещества на 1 га, к воз-расту рубки (100 лет) - соответственно 548 и 700 т. Таким обра-зом, фитомасса насаждения меньше его обшей продуктивности в возрасте 100 лет в 2.3 раза, в 180 лет в 3.3-3.9 раза.

Наиболее активно круговорот веществ в насаждении осущест-вляется напочвенным покровом, что связано с меньшей продолжительностью жизни составляющих его растений по сравнению с деревьями. Для него отношение отпада к приросту колеблется от 94 до 105% в сосняке брусничном и от 97 до 100% в сосняке чер-ничном Анализ величины и структуры общего запаса, прироста, теку-щего изменения и отпада фитомассы, а также потребления, закреп-ления и возврата элементов почвенного питания в насаждениях сосняков брусничного и черничного позволяет отметить ряд особен-ностей их формирования фитомасса возрастает примерно в 10 раз. При этом на одних и тех же возрастных этапах количество фитомассы древостоя в сосняке черничном больше по сравнению с сосняком брусничным на 25-30%. С улучшением экологических условий ускоряется процесс развития древостоя, т.е. раньше происходит смыкание крон, раньше наступа-ет кульминация текущего прироста, текущего изменения запаса и отпада фитомассы древостоя, раньше начинается распад древостоя и все эти процессы протекают гораздо интенсивнее. С ухудшением лесорастительных условий в фитомассе древостоя увеличивается от-носительное содержание хвои, корней и в небольшой степени ветвей и уменьшается доля стволов. Эти факты можно объяснить специфи-кой структурных адаптаций, как отдельных особей, так и древостоя в целом к характеру лесорастительных условий.

Доля живого напочвенного покрова в обшей фитомассе насаж-дения в лучших лесорастительных условиях по сравнению с худшими меньше на начальном и конечном этапах формирования насажде-ния, что связано с различием эдафических факторов, факторов мик-роклимата под пологом древостоя и различным видовым составом напочвенного покрова.

К возрасту биологической спелости (начало распада) общая продуктивность насаждения сосняка брусничного составляет 994 т, сосняка черничного 1272 т органического вещества на 1 га, к воз-расту рубки (100 лет) - соответственно 548 и 700 т. Таким обра-зом, фитомасса насаждения меньше его обшей продуктивности в возрасте 100 лет в 2.3 раза, в 180 лет в 3.3-3.9 раза.

Наиболее активно круговорот веществ в насаждении осущест-вляется напочвенным покровом, что связано с меньшей продолжительностью жизни составляющих его растений по сравнению с деревьями. Для него отношение отпада к приросту колеблется от 94 до 105% в сосняке брусничном и от 97 до 100% в сосняке чер-ничном.

В целом для древостоя отношение отпада к приросту увеличи-вается от 41-42% в возрасте 20 лет до 99% к 160 годам, что сви-детельствует о непрерывном уменьшении доли прироста, закрепляю-щейся в фитомассе древостоя, с увеличением его возраста. Роль отдельных органов деревьев в круговороте веществ определяется продолжительностью их функционирования. На первом месте в этом отношении находится хвоя, далее следуют ветви, корни и стволы. Однако с увеличением возраста древостоя соотношения опада и прироста у отдельных органов деревьев постепенно сближаются и к началу распада древостоя составляют около 100%.

Процесс биологического круговорота элементов почвенного питания изменяется в зависимости от лесорастительных условий и возраста насаждения.

За период от образования насаждения до начала его распада в сосняке брусничном вовлекается в биологический круговорот око-ло 12.4 т элементов почвенного питания, в том числе азота 5, кальция 3, калия 1,6 и фосфора 0,6 т. В сосняке черничном эти показатели составляют соответственно 17,8, 8,21 2,6, 3,6 и 0,7 т. За 100-летний период емкость круговорота элементов почвенного питания вдвое меньше. Общая емкость биологического круговорота веществ в сосняке черничном в 1,4 раза больше по сравнению с сос-няком брусничным, в том числе азота в 1,6 раза. В зависимости от условий местопроизрастания изменяется соотношение основных эле-ментов почвенного питания, вовлекаемых в биологический, кругово-рот. Если в сосняке брусничном N>Ca>K>P (50:28:17:5), то в сосняке черничном N>K>Ca>P (54:24:17:5)

По мере увеличения возраста древостоя увеличивается интен-сивность круговорота элементов почвенного питания, при-чем в одном и том же возрасте она выше в более производительных насаждениях. На первых этапах формирования насаждения (20-40лет) в сосняке брусничном наиболее интенсивно обращаются фосфор, ка-лий и кремний, в сосняке черничном - кремний, фосфор и калий. С увеличением возраста насаждений различия в интенсивности круго-ворота отдельных элементов почвенного питания постепенно умень-шаются и к началу распада древостоя практически исчезают. Раз-личия в возрастной динамике круговорота зольных элементов и азо-та в исследованных типах леса связаны в первую очередь с различ-ной структурой фитомассы древостоев и различным видовым соста-вом живого напочвенного покрова (Казимиров, Волков, 1977).

В целом для древостоя отношение отпада к приросту увеличи-вается от 41-42% в возрасте 20 лет до 99% к 160 годам, что сви-детельствует о непрерывном уменьшении доли прироста, закрепляю-щейся в фитомассе древостоя, с увеличением его возраста. Роль отдельных органов деревьев в круговороте веществ определяется продолжительностью их функционирования. На первом месте в этом отношении находится хвоя, далее следуют ветви, корни и стволы. Однако с увеличением возраста древостоя соотношения опада и прироста у отдельных органов деревьев постепенно сближаются и к началу распада древостоя составляют около 100%.

Процесс биологического круговорота элементов почвенного питания изменяется в зависимости от лесорастительных условий и возраста насаждения.

За период от образования насаждения до начала его распада в сосняке брусничном вовлекается в биологический круговорот око-ло 12.4 т элементов почвенного питания, в том числе азота 5, кальция 3, калия 1,6 и фосфора 0,6 т. В сосняке черничном эти показатели составляют соответственно 17,8, 8,21 2,6, 3,6 и 0,7 т. За 100-летний период емкость круговорота элементов почвенного питания вдвое меньше. Общая емкость биологического круговорота веществ в сосняке черничном в 1,4 раза больше по сравнению с сос-няком брусничным, в том числе азота в 1,6 раза. В зависимости от условий местопроизрастания изменяется соотношение основных эле-ментов почвенного питания, вовлекаемых в биологический, кругово-рот. Если в сосняке брусничном N>Ca>K>P (50:28:17:5), то в сосняке черничном N>K>Ca>P (54:24:17:5)

По мере увеличения возраста древостоя увеличивается интен-сивность круговорота элементов почвенного питания, при-чем в одном и том же возрасте она выше в более производительных насаждениях. На первых этапах формирования насаждения (20-40лет) в сосняке брусничном наиболее интенсивно обращаются фосфор, ка-лий и кремний, в сосняке черничном - кремний, фосфор и калий. С увеличением возраста насаждений различия в интенсивности круго-ворота отдельных элементов почвенного питания постепенно умень-шаются и к началу распада древостоя практически исчезают. Раз-личия в возрастной динамике круговорота зольных элементов и азо-та в исследованных типах леса связаны в первую очередь с различ-ной структурой фитомассы древостоев и различным видовым соста-вом живого напочвенного покрова (Казимиров, Волков, 1977).

3.3. Хозяйственная деятельность и особенности биогеохимического цикла углерода в лесных экосистемах

Основными пулами углерода в лесных экосистемах являются: дебрис, пул углерода подстилки, пул углерода лабильного гумуса и пул углерода стабильного гумуса.

Пул дебриса пополняется из пула живой фитомассы за счет отпада. Процесс пополнения пула подстилки из пула живой фитомассы называется опадом. Опад включает сезонный листопад лиственных пород и лиственницы, отми-рание хвои у вечнозеленых хвойных, сезонное отмирание травянистых рас-тений напочвенного покрова, отмирание тонких ветвей и поверхностных ча-стей коры, опад генеративных органов деревьев. Кроме того, пул подстилки попол-няется и из пула дебриса за счет опада листвы или хвои, тонких ветвей и мелких частей коры усохших деревьев. Как пул дебриса, так и пул подстилки подвергаются гетеротрофной деструкции, в результате чего часть углерода переходит не-посредственно в атмосферу. Оставшаяся часть углерода дебриса и подстилки трансформируется в углерод лабильного гумуса почвы. Часть лабильного гумуса минерализуется, в результате чего углерод выделяется в атмосферу, а часть переходит в стабильный гумус. В свою очередь стабильный гумус также подвергается процессам минерали-зации, а углерод освобождается в атмосферу. В устойчивых экосистемах климатического климакса все перечисленные пулы стремятся к стабилизации, а потоки - к равновесию. Однако далеко не все российские леса могут рассматриваться как равновесные. В первую очередь это относится к лесам Европейской части России, которая за прошедшее столетие испытала многочисленные изменения в землепользовании. По сравнению с Азиатской частью РФ в этом регионе намного выше доля молодых и средневоз-растных насаждений, образовавшихся как в результате интенсивной лесоэксплуатации 50-70-х годов, так и в результате за-растания сельскохозяйственных земель (коллективизация 30-х годов, период Великой Отечественной войны, экономический кризис 90-х годов). Существен-ные изменения детритного компонента углеродного цикла лесов могут про-изойти при усилении проявлений глобальных изменений климата. При наличии устойчивого потепления произойдут изменения границ климатических климак-сов, в результате чего многие ныне устойчивые лесные экосистемы превратят-ся в стадии сукцессии. Их переход в новое устойчивое состояние, очевидно, зай-мет значительное время, а результатом может стать как потеря углерода, так и накопление его, в первую очередь в пулах лабильного и стабильного гумуса (Кудеяров, Заварзин и др., 2007).

Как показывает моделирование накопления углерода в процессе восстановления климаксовых лесов и при различных хозяйственных нагрузках (различные системы рубок) только для лесов естественного развития рассчитанное соотношение потоков (баланс) углерода положительно и может составить 125-130 т С/га за 200-летний период. При любом из вариантов хозяйственного использования изъятие углерода с древесиной в рассматриваемых авторами лесах не компенсируется созданием новой биомассы; наибольшие потери характерны для практики сплошных рубок (Комаров, Припутина, 2006; Кудеяров, Заварзин и др., 2007).

В настоящее время в Европейской части России отмечается достоверное увеличение продуктивности спелых и перестойных лесов в большинстве таежных регионов. Но, несмотря на то, что факт увеличения приростов демонстрируется довольно часто, основные причины ещё неясны. Комаров, Припутина с соавторами (2006) рассматривают роль увеличения техногенных выпадений азота из атмосферы в несколько раз, как фактор возрастания продуктивности. Моделирование воздействия дополнительных количеств азота при различных сценариях ведения лесного хозяйства привело к следующим выводам:

А) реакции почвы и растительности на уровень азотных выпадений из атмосферы проходят с различной скоростью, почва откликается на изменения быстрее, однако ее буферных способностей оказывается достаточно для того, чтобы растительность ещё достаточно долго поддерживала уровень своей продуктивности;

Б) существует некоторый уровень поступления азота в лесную экосистему, при котором продуктивность экосистемы превышает потери, связанные с лесозаготовками, производимыми по экологически обоснованным критериям, в том числе и по нормативам рубок;

В) даже относительно высокий уровень выпадений азота (20 кг N/га в год) при «хищнических» лесозаготовках уменьшает устойчивость лесной экосистемы и приводит к потере углерода и азота в лесной растительности и почве.

Заключение

Таким образом, почва как многокомпонентная система всегда является цен-тром биологического круговорота. Она обеспечивает его протекание работой различных механизмов. Среди них не только механизм выветривания, снабжа-ющий питательными элементами живые организмы на ранних стадиях кругово-рота, но и механизм удержания биофильных элементов, что обусловливается глинными минералами. В почве создаются и удерживаются новые биогенные тела природы, причем возобновляемые, такие как подстилка и гумус, чью роль в круговороте трудно переоценить. Последние обеспечивают и причем чрезвы-чайно длительный период нормальное функционирование наземных экосистем и высокую продуктивность. Почва одновременно может являться транзитной системой для поступления биофильных элементов, участвующих в круговороте. Таким примером является внеландшафтное поступление веществ из атмосфе-ры, а также из почвенно-грунтовых вод или поступление элементов с латераль-ным потоком. В жестких экологических условиях, например, в северной тайге или тундре не случайно более высокая продуктивность обнаруживается в усло-виях склоновых, часто полугидроморфных ландшафтов, где осуществляется дополнительное поступление биофильных элементов с латеральным потоком. Поэтому биологический круговорот осуществляется не только на фоне различ-ных петрографических матриц, но и различных условий функционирования почвы. Функционирование почвы может быть не только дополнительным фактором обеспечивающим цикличность круговоро-та, но и зачастую ведущим, причем на разных уровнях организации биосферы (Васильевская, Богатырев, 2003).

Перспективы развития учения о биологическом круговороте лежат в различных плоскостях, но составляют единое целое. В настоящий период теория несколько опережает экспериментальные и эмпирические наблюдения. Далеко не все идеи, положения и имеющиеся в литературе показатели реализуются в выполняемых в этой области научных исследованиях (Богатырев, 2005).

В заключение приведем несколько фундаментальных показателей по Богатыреву (2005), которые в силу разных обстоятельств ещё не получили должного развития в учении о биологическом круговороте.

В первую очередь - это величина, характеризующая суммарное содержание зольных элементов - речь идет, прежде всего, об истинной, или чистой золе.

Второй важнейший пробел заключен в недостаточном использовании энергетических величин. Довольно малое число исследователей редко пользуется даже косвенным опытом расчетов калориметрических величин, между тем как определение содержания углеводов, белков и жиров позволяет довольно точно рассчитать величины теплотворной способности.

Третий, существенный пробел заключается по-прежнему в отсутствии полной и достоверной информации о продуктивности наземных экосистем. Отметим, что представление о циклах круговорота основывается на однократном определении величин продуктивности и гораздо реже на исследовании динамики процессов продуктивности. Почти уникальными материалами можно считать сведения о круговороте, при котором использовался метод интенсивностей потоков. Между тем, как использование последнего метода изменяет соотношение ведущих элементах, участвующих в круговороте.

Четвертый пробел обусловлен различной степенью исследования наземных экосистем. В целом наименьшей информативностью характеризуются тундровые экосистемы и районы с распространением многолетнемерзлых пород

Пятый пробел обусловлен слабой изученностью биохимического состава структурных составляющих фитомассы, включая подстилку, что в свою очередь не позволяет достаточно достоверно судить, прежде всего, о биогеохимии углерода.

Литература

Алексеенко В. А. Экологическая геохимия. М.: Логос, 2000, 627 с.

Базилевич Н. И. Географические закономерности структуры и функционирования экосистем. - М.: Наука, 1986. - 296 с.

Белянина Л. А. Состав почвенных растворов, почвенно-грунтовых и поверхностных вод территории Центрально-лесного государственного природного биосферного заповедника: Автореф. дис. …канд. биол. наук. - М., 2007. - 25 с.

Богатырев Л. Г. О теоретическом и критериальном информационном обеспечении исследований в области биологического круговорота // Экспериментальная информация в почвоведении: теории, методы получения и пути стандартизации. Москва, 2005.

Васильевская В. Д., Богатырев Л. Г. Функции почв как основного звена в цикле биологического круговорота веществ и устойчивость наземных экосистем. - Структурно-функциональная роль почв и почвенной биоты в биосфере. - М.: Наука, 2003. - С. 174-188.

Гришина Л. А. Биологический круговорот и его роль в почвообразовании. - М.: Изд-во МГУ, 1974. - 127 с.

Добровольский В. В. Основы биогеохимии. - М.: Высш. шк., 1998. - 413 с.

Злотин Р. И., Ходашова К. С. Роль животных в биологическом круговороте лесостепных экосистем. - М.: Наука, 1974. - 200 с.

Казимиров Н. И., Волков А. Д., Зябченко С. С., Иванчиков А. А., Морозова Р. М. Обмен веществ и энергии в сосновых лесах Европейского Севера. - Л.: Наука, 1977. - 304 с.

Казимиров Н. И., Морозова Р. М., Куликова В. К. Органическая масса и потоки веществ в березняках средней тайги. - Л.: Наука, 1978. - 216 с.

Карпачевский Л. О. Экологическое почвоведение. - М.: ГЕОС, 2005 - 335 с.

Касимов Н. С. Базовые концепции и принципы геохимии ландшафтов // Геохимия биосферы. - Смоленск: Ойкумена, 2006. - С. 21-25.

Керженцев А. С. Функциональная экология. - М.: Наука, 2006. - 259 с.

Ковда В. А. Основы учения о почвах. М.: Наука, 1973. Кн. 1 - 447 с., кн 2 - 468 с.

Коломыц Э. Г. Региональная модель глобальных изменений природной среды. - М.: Наука, 2003. - 371 с.

Комаров А. С., Припутина И. В., Михайлов А. В., Чертов О. Г. Биогеохимический цикл углерода в лесных экосистемах России и его техногенные изменения // Почвенные процессы и пространственно-временная организация почв - М.: Наука, 2006. - 568 с.

Перельман А. И. Геохимия ландшафта. - М.: Высш. шк., 1975. - 342 с.

Перельман А. И., Касимов Н. С. Геохимия ландшафта. М.: Астрея, 1999, 768 с.

Кудеяров В. Н., Заварзин Г. А., Благодатский С. А., Борисов А. В. и др. Пулы и потоки углерода в наземных экосистемах России. - М.: Наука, 2007. - 315 с.

Ремезов Н. П., Быкова Л. Н., Смирнова К. М. Потребление и круговорот азота и зольных элементов в лесах Европейской части СССР - М.: Изд-во Моск. Ун-та, 1959. - 282 с.

Родин Л.Е., Ремезов Н.П., Базилевич Н.И. Методические указания к изучению динамики и биологического круговорота в фитоценозах - Л.: Наука, 1968.- 143 с.

Смольянинов И. И. Биологический круговорот веществ и повышение продуктивности лесов. - М.: Лесная промышленность, 1969. - 191 с.

Титлянова А. А., Тесаржова М. Режимы биологического круговорота. - Новосибирск: Наука, 1991. - 150 с.

Трофимов С. Я. Функционирование почв: определение, категории процессов, подходы к типологии // Регуляторная роль почв в функционировании таежных экосистем. - М.: Наука, 2002. - 364 с.

Фокин А. Д. Роль растений в формировании транспортных потоков вещества в почвах // Организация почвенных систем. - Пущино: ИФХБПП РАН, 2007. Т. 1 - С. 50-52.

Чижикова Н. П., Верховец И. А., Лебедева-(Верба), Владыченский А. С. Формирование почв на покровных суглинках в южнотаежной зоне под разными фитоценозами // Почвообразовательные процессы. - М.: Почв. ин-т им В. В. Докучаева, 2006. - 510 с.

Шилов И. А. Экология. - М.: Высш. шк., 2000. - 512 с.

Шишов Л. Л., Кауричев И. С., Большаков В. А. и др. Лизиметры в почвенных исследованиях. - М.: Почв. ин-т им В. В. Докучаева, 1998. - 264 с.

Яшин И. М., Шишов Л. Л., Раскатов В. А. Методология и опыт изучения миграции веществ. М.: Изд-во МСХА, 2001. - 173 с.

Страницы: 1, 2, 3


ИНТЕРЕСНОЕ



© 2009 Все права защищены.