бесплатно рефераты
 

Как клетки общаются между собой

p align="left">После этих работ был выяснен механизм действия некоторых ядов. Например, из яда паука каракурта был выделен белок - латротоксин, который по существу представляет собой незакрывающиеся кальциевые каналы. Он встраивается в пресинаптическую мембрану и начинает пропускать в терминаль кальций. В результате запасы ацетилхолина в терминали полностью истощаются и нервная система не может вызвать сокращения мышц.

Но что же делает кальций, попав внутрь терминали? На этот вопрос пока нет однозначного ответа. Возможно, кальций просто экранирует отрицательные заряды мембраны везикул и мембраны терминали, что позволяет им слиться; возможно, кальций вызывает сокращение «внутриклеточных мышц», которые подтягивают пузырек к мембране; а может быть, механизм действия кальция окажется совсем иным и неожиданным.

Работа постсинаптической мембраны

Что же делает ацетилхолин с постсинаптической мембраной, к которой он диффундирует? В покое удельное сопротивление постсинаптической мембраны равно примерно 3 ООО Ом-см2, но при действии ацетилхолина оно снижается до 1 Ом-см2. Это сразу наводит на мысль, что ацетилхолин открывает какие-то каналы в постсинаптической мембране. И это предположение верно.

В постсинаптической мембране находятся каналы, «ворота» которых управляются не МП, а ацетилхолином, И канал, и ворота являются частями особой сложно устроенной белковой молекулы. Конец такой молекулы, торчащий из мембраны наружу, «узнает» молекулы ацетилхолина. Если с ним связываются две молекулы - ацетилхолина, то открывается канал, через который могут проходить ионы К+ и Ка+. Иными словами, в мембране открывается «электрическая дырка» со всеми вытекающими последствиями, а именно деполяризацией мембраны. Таким образом, постсинаптическая мембрана преобразует химический сигнал вновь в электрический сигнал - деполяризацию мембраны.

Возникает естественный вопрос: почему эта деполяризация исчезает? Ведь действие химического синапса обычно кратковременно. Значит, ацетилхолин, открывающий каналы в постсинаптической мембране, куда-то девается. Оказывается, медиатор связывается с холинорецептором очень непрочно: открыв ворота канала, он отрывается и вновь уходит в синаптическую щель. А в щели имеется особый фермент, который его разрушает. Так что медиатор - вещество очень «скромное»: сделав свое дело, он тут же уходит. Именно это его свойство обеспечивает кратковременность действия химического синапса.

Есть и другие вещества, которые тоже могут связываться с холинорецептором, но делают это лучше, чем ацетилхолин. Например, растительный яд кураре, которым индейцы смазывали свои стрелы, попав в организм, прочно связывается с холинорецепторами мышцы и занимает «посадочные площадки», предназначенные для ацетилхолина. В результате ацетилхолин не может открыть ворота каналов и любые движения становятся невозможными. На этом же основано и действие некоторых змеиных ядов; так, в частности, действуют яды змей семейства аспидовых. Интересно, что и у растений, и у змей в ходе эволюции вырабатывались яды со сходным механизмом действия. Вещества, сходные с кураре, релаксанты, сейчас используются в медицине во время операций: они расслабляют мышцы.

Сейчас известно довольно много деталей об устройстве и работе «молекулярной машины» - холинорецептора. Холинорецептор состоит из пяти субъединиц - участков. Изучение аминокислотных последовательностей этих единиц показало, что все они произошли в результате модификации одного и того же гена. Соединяясь между собой, эти субъединицы образуют в центре канал. Этот канал имеет примерно квадратное сечение со стороной квадрата 0,65 нм. Он не различает ионов К+ и Ка+, но не пропускает анионы. Ворота канала открываются на случайные промежутки времени. Проводимость такого канала равна примерно 3-Ю»11 С. Длина холинорецептора в 5-6 раз превышает толщину мембраны, так что белок сильно торчит из нее наружу и внутрь клетки. Ацетилхолин, выброшенный одним пузырьком, открывает около 2 ООО каналов,

Какие синапсы лучше - электрические или химические?

Из нашего рассказа вы поняли, что электрические синапсы устроены просто, химические - несложней, тем более, что мы до сих пор разобрали только один из многих видов ХС - нервно-мышечный. Как же осуществляется разделение труда между этими двумя видами синапсов? Обычно в организме они используются в таких нервных цепях, где их свойства оказываются наиболее полезными.

Например, отличительной особенностью ЭС является быстродействие. Естественно, что ЭС находятся в тех цепях, которые обслуживают срочные реакции организма: отдергивание тела, отпрыгивание, убегание.

Например, у дождевых червей вдоль всего тела проходят гигантские «аксоны». Как видите, они не такие гигантские, как у кальмара, да и устроены они иначе. На самом деле это не аксон, т.е. не отросток одной клетки. Этот «аксон» состоит из множества цилиндрических кусочков. В каждом сегменте тела есть нервная клетка, которая отращивает такой кусочек; затем торцевые мембраны этих цилиндров соединяются коннексонами, так что получается кабель с перегородками, пронизанными каналами коннексонов. В результате импульс бежит по этому составному аксону как по обычному толстому нервному волокну. Эти волокна вызывают быстрое сокращение тела червя, обеспечивая реакции отдергивания от раздражителя или быстрого втягивания в норку. При химических синапсах эта реакция занимала бы несколько десятых долей секунды: ведь задержка между сегментами в ХС холоднокровного составляет несколько миллисекунд, а сегментов может быть несколько десятков и даже сотня; задержка на Э что отбрасывает рака назад, подальше от опасности. ЭС имеются в системах спасения бегством у некоторых медуз, моллюсков, рыб и других животных.

Вторая характерная особенность ЭС состоит в том, что они пропускают сигнал в обе стороны - они симметричны). Это может способствовать синхронизации, т.е., одновременности возбуждения нейронов* связанных ЭС. Такие синхронизирующие системы довольно распространены в живой природе. В простейшем случае они состоят всего из двух клеток; связь этих клеток через ЭС приводит к тому, что при возбуждении одного из нейронов практически одновременно возникает импульс и во втором. Например, у электрического сома такая система из двух нейронов обеспечивает одновременность разряда электрических органов обоих сторон тела. У другой рыбы, которая умеет, сокращая плавательный пузырь, издавать звуки, напоминающие кваканье все клетки, управляющие мышцами плавательного пузыря, связаны ЭС, что позволяет возбуждаться практически одновременно.

Электрические синапсы довольно «модны» у беспозвоночных и низших позвоночных. У высших позвоночных большинство синапсов - химические. Использование в организмах ХС связано с их характерной особенностью - преобразованием электрического сигнала в химический и обратно. В них одинаковые электрические импульсы могут вызывать выделение самых разных веществ-медиаторов; например, у кольчатых червей в нервно-мышечных синапсах используется тот же ацетилхолин, что и у позвоночных, а у членистоногих, которые произошли в ходе эволюции от кольчатых червей* используется в таких синапсах совсем другой медиатор - глутамат. С другой стороны, в ХС один и тот же медиатор, действуя на разные клетки-мишени, может открывать совершенно разные каналы. Например, ацетилхолин в одних случаях открывает чисто калиевые или чисто натриевые каналы в других - каналы, пропускающие и калий, и натрий, в третьих - каналы, пропускающие только хлор, и т.д. Поэтому ХС может выполнять более сложные функции, чем ЭС. Так, одно из самых важных явлений в нейрофизиологии - явление торможения - практически всегда осуществляется ХС),.

Химический синапс и торможение

Известно, что человек волевым усилием может остановить безусловный рефлекс. Существует, например, защитный рефлекс отдергивания руки, когда рука касается горячего предмета, чего-то острого и т.д. Однако известен пример римского героя Сцеволы, который положил руку на горящую жаровню и не отдернул ее, преодолев боль. Каждый из нас затормаживает рефлекс отдергивания, когда берут кровь на анализ. В менее явной форме торможение проявляется почти во всяком поведенческом акте, в том числе и в непроизвольных движениях, торможение участвует и в регуляции работы внутренних органов.

Что же такое торможение? В чем его причина? По этому поводу в литературе до сих пор можно встретить самые фантастические утверждения. Даже в школьном учебнике физиологии говорится, что торможение в данном месте нервной системы вызывается тем, что сильно возбуждается соседний участок. Так что же такое торможение на самом деле?

Прежде всего подчеркнем, что под торможением понимается активный процесс, а не просто отсутствие возбуждения. Заторможенной называют клетку, в которой какой-то механизм противодействует возбуждению. Вспомнив, что такое возбуждение, легко понять, что это за механизм. Мы знаем, что нервная клетка или волокно возбуждаются тогда, когда деполяризуется их мембрана. Значит, противоположный сдвиг мембранного потенциала и будет торможением: такую клетку будет труднее возбудить, так как потребуется более сильное воздействие, чтобы довести ее потенциал до порогового значения»

Как можно гиперполяризовать, т.е. затормозить клетку? Вспомнив опять, «что снаружи, что внутри», легко сообразить, что для этого надо либо усиливать проницаемость мембран для ионов калия, которые будут выносить наружу положительный заряд, либо увеличивать проницаемость мембраны для ионов хлора, которых много в наружной среде. Перемещение отрицательных ионов хлора внутрь клетки даст тот же эффект, что и перемещение положительных ионов калия наружу.

В нервной системе встречаются тормозные синапсы, использующие и калий, и хлор. Как правило, при этом используются особые тормозные медиаторы, которые управляют воротами соответствующих каналов. Например, у позвоночных есть два тормозных медиатора - аминокислота глицин и гаммааминомасляная кислота, которые, в основном, открывают хлорные каналы мембраны. Интересно, что гаммааминомасляная кислота является тормозным медиатором не только у позвоночных, но и у членистоногих.

Существуют и другие способы торможения. Например, известно, что блуждающий нерв тормозит деятельность сердца. Блуждающий нерв выделяет ацетилхолин, точно такой же, как тот, который возбуждает скелетные мышцы, но сердце он тормозит. Оказывается, в случае сердца ацетилхолин действует не прямо на ворота каналов. Он садится на особые рецепторы, активация которых меняет метаболизм сердечных клеток. В результате ряда внутриклеточных реакций возникает особое вещество, которое и открывает изнутри ворота калиевых каналов. Такие синапсы называют «метаболическими».

Итак, мы видели, что в ХС с помощью разных медиаторов могут открываться те или иные каналы клеточной мембраны. Если при этом возникает деполяризация - синапс возбуждающий, если возникает гиперполяризация - синапс тормозный.

О величине синаптических потенциалов

Мы с вами рассмотрели принципы работы возбуждающих и тормозных синапсов. Посмотрим теперь, как можно оценить количественно действие химических синапсов.

Из рассказа о потенциале покоя и потенциале действия вы знаете, что для каждого иона существует свой равновесный потенциал, при котором число ионов, входящих в клетку и выходящих из клетки, становится одинаковым. В покое для ионов калия равновесный потенциал равен примерно -80 мВ; при возбуждении, когда в основном открываются натриевые каналы, равновесный потенциал для натрия равен примерно +40 мВ. У постсинаптической мембраны тоже есть свой равновесный потенциал. Его величина зависит от того, какие ионы пропускает эта мембрана. Например, постсинаптическая мембрана возбуждающего синапса, каналы которой в равной мере пропускают и калий, и натрий, имеет равновесный потенциал, лежащий ровно посередине между таковыми для калия и натрия: /2 = -20 мВ. А у тормозного синапса, пропускающего ионы хлора, равновесный потенциал равен примерно -80 мВ.

Пока медиатор не подействовал на постсинаптическую мембрану, ее каналы закрыты и ток через нее не течет. Под действием медиатора открываются каналы для тех или иных ионов и они будут идти через постсинаптическую мембрану тем эффективнее, чем дальше отстоит ее потенциал от равновесного. Можно сказать, что в области постсинаптической мембраны включается источник э.д.с. величиной, где Ус - равновесный потенциал постсинаптической мембраны, а V - мембранный потенциал клетки в данный момент. Если мембранный потенциал равен равновесному для данного синапса, то ток через синапс не пойдет.

Представим теперь эквивалентную электрическую схему нейрона с действующим на него синапсом. При выделении медиатора будет течь синаптический ток сила которого по закону Ома для всей цепи равна

Здесь. Добщ - сопротивление всей клеточной мембраны, а Лс - сопротивление синапса. Этот ток создает падение напряжения на сопротивлении внесинаптическои мембраны:

Этот сдвиг потенциала называют постсинаптическим потенциалом. Если синапс возбуждающий, сдвиг потенциала называют возбуждающим постсинаптическим потенциалом, если же синапс тормозный, то сдвиг потенциала называют тормозным постсинаптическим потенциалом

Давайте попробуем оценить величину ВПСП, создаваемого одним синапсом на мотонейроне). Равновесный потенциал этого синапса лежит в области -20 мВ. Сопротивление мембраны мотонейрона равно примерно 107 Ом. Сопротивление среднего синапса площадью в 1 мкм2 равно примерно 1012 Ом. Отсюда АУ -

мВ.

Мы видим, что один синапс создает крайне малый сдвиг потенциала, ведь порог возбуждения 10-15 мВ. Значит, чтобы возбудить мотонейрон, на него должно подействовать много синапсов.

Наша формула годится в том случае, если синаптический ток имеет достаточно большую длительность, тогда все емкости успевают зарядиться и их можно не учитывать. Для кратковременных синаптических токов надо учитывать и емкость мембраны.

Устройства, подобные синапсам

Оказывается, что устройства, подобные синапсам, как электрическим, так и химическим, играют важную роль в жизнедеятельности самых разных тканей и органов.

Например, клетки сердца у самых разных животных связаны каналами из того же белка коннектина, который образует каналы в ЭС. В результате электрический сигнал распространяется по сердечной мышце от клетки к клетке за счет тех же местных токов,

что и по гигантскому «аксону» червя» Связаны коннексонами между собой и клетки гладких мышц разных внутренних органов.

Это еще не самое удивительное: все это возбудимые ткани, в которых должен распространяться электрический сигнал. Но вот уж совсем удивительным было открытие в середине 60-х годов американским биологом Левенштейном и сотрудниками Лаборатории молекулярной биологии им. А.Н. Белозерского МГУ того, что и невозбудимые клетки разных органов тоже связаны высокопроницаемыми контактами. Фактически почти все ткани организма представляют собой не скопление одиночных клеток, а единый коллектив, в котором клетки могут обмениваться через каналы высокопроницаемых контактов разнообразными молекулами. Благодаря этому в тканях возможна своеобразная «клеточная взаимопомощь», Например, если в какой-то клетке плохо работают насосы, ее соседи через каналы высокопроницаемых контактов «делятся» с ней своим ионным запасом и поддерживают ее потенциал покоя.

При изучении высокопроницаемых контактов было выяснено, что коннексоны являются не стабильными трубками, а динамическими структурами: каналы, образуемые коннектином, могут открываться и закрываться под действием разных факторов. Сейчас выяснен молекулярный механизм такого закрывания каналов. Коннексон состоит из 6 субъединиц, которые могут двигаться относительно друг друга, при этом отверстие может закрываться; это устройство очень похоже на устройство диафрагмы фотоаппарата с подвижными лепестками.

Зачем же нужно это свойство коннексонов? Рассмотрим один пример. Обычно в цитоплазме клеток очень мало свободного кальция. По ряду причин более высокие концентрации кальция ведут к гибели клетки, и поэтому у клеток есть ряд защитных механизмов: избытки кальция выкачиваются наружу насосами, поглощаются митохондриями и т.п. Представим себе теперь, что в системе клеток, связанных высокопроницаемыми контактами, какая-то из клеток серьезно повреждена. Защитные механизмы не могут справиться с избытком кальция, поступающего из наружной среды, и клетка погибает. Но когда кальций подходит внутри этой клетки к области клеточного контакта, коннексоны закрываются и соседние клетки отсоединяются от поврежденной. Такая конструкция похожа на систему водонепроницаемых переборок в военных кораблях: если в одном отсеке возникла пробоина, перегородки автоматически закрываются и корабль не тонет. В клеточных системах такое устройство тоже обеспечивает их высокую живучесть. Если предположить, что все сердце представляло бы собой систему клеток, прямо связанных своей цитоплазмой, тогда повреждение могло бы распространяться от клетки к клетке. Один известный ученый сказал: «Клетки сердца работают вместе, а умирают поодиночке». Теперь мы знаем, что это возможно именно благодаря свойствам коннексонов.

Но динамичность коннексонов важна не только для создания живучести. Оказалось, что высокопроницаемые контакты можно найти уже на самых ранних стадиях развития зародышей разных животных; они соединяют между собой клетки, возникающие уже при первых дроблениях яйца, а в ходе дальнейшего развития то появляются, то исчезают. Клетки то влияют друг на друга какими-то веществами, то участки зародыша изолируются друг от друга; и тогда в этих участках развивается однородная ткань из одинаковых клеток; потом такие участки вновь соединяются контактами с соседями, и вся эта сложная игра контактов важна для регуляции нормального развития.

Все, что мы узнали о высокопроницаемых контактах, невольно наводит на мысль, что передача сигналов в электрических синапсах - это вторичная «профессия» структуры, которая, как и ионные насосы, играет более общую и фундаментальную роль в развитии организмов и функционировании их тканей.

Аналогичная ситуация имеется и с химическими синапсами. Принцип их работы используется в организмах не только для передачи информации, но и в других целях. Оказывается, разнообразные секреторные клетки используют ионы Са++ для регуляции выброса секрета подобно тому, как в химическом синапсе этот процесс используется для выброса медиатора. Кроме того, клетки многих желез являются электрически возбудимыми.

Рассмотрим для примера работу клеток поджелудочной железы, вырабатывающих инсулин, регулирующий содержание сахара в крови.

Оказывается, на поверхности этих клеток имеются специальные рецепторы, реагирующие на глюкозу. Если концентрация глюкозы в крови выше нормы, то под действием этих рецепторов клетки деполяризуются и в них возникают потенциалы действия. Эти потенциалы действия имеют кальциевую природу, они возникают за счет открывания Са-каналов. При этом ионы Са++ входят внутрь клетки, что приводит к выбросу в кровь инсулина, точно так же, как в случае нервных окончаний приводит к выбросу медиатора. Роль кальция в выбросе разных веществ, в частности гормонов, показана и для многих других желез.

Нервная клетка - клетка

Этими словами мы хотим подчеркнуть, что особенные, исключительные свойства нейрона - модификация свойств, присущих и другим клеткам организма, В ходе естественного отбора молекулярные машины и разные клеточные устройства приобретают в разных клетках несколько разные функции, при этом сами устройства могут либо несколько меняться, либо использоваться в том же виде, но для другой цели. Раньше мы уже говорили, что ионные насосы и потенциалы покоя имеются у всех клеток организма, а в нервных и мышечных клетках используются для передачи сигналов.

Рассказ о синапсах дает нам особенно много примеров того, как единство превращается в многообразие. Мы видели, что коннексоны существуют у самых разных клеток организма, в том числе и невозбудимых. Они используются и при регуляции эмбрионального развития, и для передачи молекул от клетки к клетке, а в возбудимых тканях этот межклеточный канал был использован эволюцией для передачи электрического тока, для создания электрических синапсов.

Разнообразные клетки организма выделяют в окружающую среду разные вещества; прежде всего, это клетки желез. Существуют специальные клеточные приспособления для выброса секретируемых веществ: эти вещества упакованы в мембранные контейнеры, а их выброс регулируется ионами Са++, которые входят в клетку через специальные кальциевые каналы. В результате естественного отбора этот механизм используется нервными клетками в конструкции химических синапсов: в контейнерах содержится медиатор, а дальше выброс его организован так же, как выброс гормонов и других веществ. С этой точки зрения нервные клетки с химическими синапсами - это один из вариантов секреторных клеток, а медиатор - это их секрет, который только не просто выбрасывается в кровь, а поступает к совершенно определенным потребителям через синаптическую щель.

С другой стороны, мы видели, что работа клеток поджелудочной железы похожа на работу нервных клеток. Они тоже имеют потенциал действия, но этот потенциал действия служит для того, чтобы открыть кальциевые каналы и впустить внутрь ионы Са++. Да и у многих мышечных клеток основная роль потенциала действия состоит в том, чтобы открыть ворота кальциевых каналов для ионов Са++, запускающих процесс сокращения. Мы еще раз видим близкое сходство механизмов, используемых разными клетками организма в разных целях: для передачи сигнала в ЭС, для выброса секрета в клетках желез, для сокращения в клетках мышц. В конце концов, это совсем не удивительно, ведь все они - потомки одной и той же клетки и имеют идентичный геном.

Большинство клеток организма имеют на своей поверхности специальные белки-рецепторы, чтобы реагировать на действие гормонов, на содержание в крови разных веществ и т.д. Клетки иммунной системы используют такие рецепторы, чтобы отличить свои белки от чужеродных, клетки дыхательной системы - чтобы реагировать на концентрацию углекислоты и т.д. Нервные клетки используют рецепторы постсинаптической мембраны для того, чтобы в ответ на медиатор открыть дорогу тем или иным ионам и изменить мембранный потенциал. Сейчас открыто много метаболических синапсов, где эффект синапса осуществляется белками-рецепторами через изменение внутриклеточных химических реакций, что еще больше роднит их с другими типами клеточных рецепторов.

Часто говорят, что развитие науки приводит к все большей изоляции разных ее направлений, так что настоящий специалист - это человек, который знает все ни о чем или о чем-то бесконечно малом. Как мы видим, в биологии можно найти прямо противоположный пример. Чем глубже мы узнаем механизмы работы клеток и организмов, тем яснее нам становится видно проявление единых общих принципов работы, которые эволюция остроумно приспосабливает для достижения разнообразных целей.

Страницы: 1, 2


ИНТЕРЕСНОЕ



© 2009 Все права защищены.