бесплатно рефераты
 

История, панорама современного естествознания и тенденции его развития

p align="left">Вершиной в области наблюдательной астрономии стала деятельность Улугбека, который был любимым внуком создателя огромной империи Тимура. Движимый страстью к науке, Улугбек построил в Самарканде по тем временам самую большую в мире астрономическую обсерваторию, имевшую гигантский двойной квадрант и много других астрономических инструментов (азимутальный круг, астролябии, трикветры, армиллярные сферы и др.). В обсерватории был создан труд "Новые астрономические таблицы", который содержал изложение теоретических основ астрономии и каталог положения 1018 звезд.

В теоретической астрономии основное внимание уделялось уточнению кинематико-геометрических моделей "Альмагеста", устранению противоречий в теории Птолемея (в том числе с помощью более совершенной тригонометрии) и поиску нептолемеевских методов моделирования движения небесных тел.

Алхимия в средневековой культуре. В средневековой алхимии (расцвет пришёлся на XIII-XV вв.) выделялись две тенденции. Первая -мистифицированная алхимия, ориентированная на химические превращения (в частности ртути в золото) и в конечном счёте на доказательство возможности человеческими усилиями осуществлять космические превращения. В русле этой тенденции арабские алхимики сформулировали идею "философского камня" - гипотетического вещества, ускорявшего "созревание" золота в недрах земли. Это вещество заодно трактовалось и как эликсир жизни, дающий бессмертие.

Вторая тенденция была больше ориентирована на конкурентную практическую технохимию. В этой области достижения алхимии несомненны. К ним относят способы получения серной, соляной, азотной кислот, "царской водки", селитры, сплавов ртути с металлами, многих лекарственных веществ, создание химической посуды и др.

Среди алхимиков наряду с шарлатанами и фальсификаторами, было немало искренне убеждённых в реальности всеобщей взаимопревращаемости веществ, в том числе и крупных мыслителей, таких как Раймунд Луллий, Арнольдо да Вилланова, Альберт Великий, Фома Аквинский, Бонавентура и др. Почти невозможно в средневековье отделить друг от друга деятельность, связанную с химией, и деятельность, связанную с алхимией. Они переплетались самым тесным образом.

Средневековое мировоззрение постепенно начинает ограничивать и сдерживать развитие науки. Поэтому необходима была смена мировоззрения, которая произошла в эпоху Возрождения.

Глава 5. Революция в мировоззрении в эпоху Возрождения

Эпоха Возрождения сделала огромный вклад в развитие научной мысли благодаря новому пониманию места и роли человека в объективном мире. Человек стал пониматься отныне не как природное существо, а как творец самого себя, что и выделяет его из всех прочих живых существ. Человек становится на место Бога: он сам свой собственный творец, он владыка природы. Эта мысль была чужда языческой Греции, так как для нее природа это то, что существует само по себе, что никем не создано. Более того, для античной науки небесные тела - нечто принципиально отличное от земного мира, это божественные существа, и создать их с помощью орудий и небесного материала было бы равносильно созданию богов -кощунственная для античности мысль.

Возрождение делает следующий шаг - человек чувствует себя божественным. Поэтому в эту эпоху столь символическое значение получает фигура художника - в ней наиболее адекватно выражается самая глубокая ренессансная идея - идея человека-творца, человека, вставшего на место Бога.

В эпоху Возрождения изменилась ситуация в сфере познания живого. Здесь особое место принадлежит XVI в. В истории биологии этот период выделяется как начало глубокого перелома в способах познания живого. Ренессансный гуманизм, пересмотрев представление о месте человека в природе, возвысил роль человека в мире.

Значительные изменения происходят в способе биологического познания - вырабатываются стандарты, критерии и нормы исследования органического мира. На смену стихийности, спекулятивным домыслам, фантазиям и суевериям постепенно приходит установка на объективное, доказательное, эмпирически обоснованное знание. Благодаря коллективным усилиям ученых многих европейских стран такая установка обеспечила постепенное накопление колоссального фактического материала. Значительную роль в этом процессе сыграли Великие географические открытия, эпоха которых раздвинула мировоззренческий горизонт европейцев - они узнали множество новых биологических, геологических, географических и других явлений. Фауна и флора вновь открытых стран и континентов не только значительно расширили эмпирический базис биологии, но и поставили вопрос о его систематизации.

Важной вехой в развитии анатомии стало творчество А. Везалия, исправившего ряд крупных ошибок, укоренившихся в биологии и медицине со времен античности. М. Сервет, павший жертвой протестантского религиозного фанатизма, и У. Гарвей исследовали проблему кровообращения. У. Альдрованди обратился к традиции античной эмбриологии, а его ученик В. Койтер, систематически изучая развитие куриного зародыша, заложил основы методологии экспериментального эмбриологического исследования. Г. Фаллопий и Б. Евстахий проводят сравнение структуры человеческого зародыша и взрослого человека, соединяя тем самым анатомию с эмбриологией.

Величайшим мыслителем, которому суждено было начать великую революцию в астрономии, повлекшую за собой революцию во всем естествознании, был гениальный польский астроном Николай Коперник. Еще в конце XV в., после знакомства и глубокого изучения "Альмагеста", восхищение математическим гением Птолемеем, сменилось у Коперника сначала сомнениями в истинности этой теории, а затем и убеждением в существовании глубоких противоречий в геоцентризме. Он начал поиск других фундаментальных астрономических идей, изучал сохранившиеся сочинения или изложения учений древнегреческих математиков и философов, в том числе и первого гелиоцентриста Аристарха Самосского, и мыслителей, утверждавших подвижность Земли.

Коперник первым взглянул на весь тысячелетний опыт развития астрономии глазами человека эпохи Возрождения: смелого, уверенного, творческого, новатора. Предшественники Коперника не имели смелости отказаться от самого геоцентрического принципа и пытались либо совершенствовать мелкие детали птолемеевской системы, либо обращаться к еще более древней схеме гомоцентрических сфер. Коперник сумел разорвать с этой тысячелетней консервативной астрономической традицией, преодолеть преклонение перед древними авторитетами.

Между 1505-1507 гг. Коперник в "Малом комментарии" изложил принципиальные основы гелиоцентрической астрономии. Теоретическая обработка астрономических данных была завершена к 1530 г. Но только в 1543 г. увидело свет одно из величайших творений в Истории человеческой мысли -- "О вращениях небесных сфер", где изложена математическая теория сложных видимых движений Солнца, Луны, пяти планет и сферы звезд с соответствующими математическими таблицами и приложением каталога звезд.

В центре мира Коперник поместил Солнце, вокруг которого движутся планеты, и среди них впервые зачисленная в ранг "подвижных звезд" Земля со своим спутником Луной. На огромном расстоянии от планетной системы находится сфера звезд (рис. 2).

Его вывод о чудовищной удаленности этой сферы диктовался гелиоцентрическим принципом. Только так мог Коперник согласовать его с видимым отсутствием у звезд смещений за счет движения самого наблюдателя вместе с Землей (т.е. отсутствием у них параллаксов).

В отличие от своих предшественников, Коперник пытался создать логически простую и стройную планетную теорию. В отсутствие простоты, стройности, системности Коперник увидел коренную несостоятельность теории Птолемея, в которой не было единого стержневого принципа, объясняющего системные закономерности в движениях планет.

объяснение смена движется вокруг неизменным в оси своего

Рис. 2. Гелиоцентрическая система Коперника

Коперник был уверен, что представление движений небесных тел как единой системы позволит определить реальные физические характеристики небесных тел, т.е. то, о чем в геоцентрической модели вовсе не было и речи. Поэтому свою теорию он рассматривал как теорию реального устройства Вселенной. Впервые получила времен года: Земля Солнца, сохраняя пространстве положение суточного вращения.

Теория Коперника логически стройная, четкая и простая. Она способна рационально объяснить то, что раньше либо не объяснялось вовсе, либо объяснялось искусственно, связать в единое то, что ранее считалось совершенно различными явлениями. Это - ее несомненные достоинства. Они свидетельствовали об истинности гелиоцентризма. Наиболее проницательные мыслители поняли это сразу.

Следующий шаг в мировоззренческих выводах был сделан монахом одного из неаполитанских монастырей Джордано Бруно. Познакомившись в 60-е гг. XVI в. с гелиоцентрической теорией Коперника, Бруно поначалу отнесся к ней с недоверием. Чтобы выработать свое собственное отношение к проблеме устройства Космоса, он обратился к изучению системы Птолемея и материалистических учений древнегреческих мыслителей, в первую очередь атомистов, о бесконечности Вселенной. Большую роль в формировании взглядов Бруно сыграло его знакомство с идеями Николая Кузанского, который утверждал, что ни одно тело не может быть центром Вселенной в силу ее бесконечности. Объединив гелиоцентризм Н. Коперника с идеями Н. Кузанского об изотропности, однородности и безграничности Вселенной, Бруно пришел к концепции множественности планетных систем в бесконечной Вселенной.

Бруно отвергал замкнутую сферу звезд, центральное положение Солнца во Вселенной и провозглашал тождество Солнца и звезд, множественность "солнечных систем" в бесконечной Вселенной, множественную населенность Вселенной. Указывая на колоссальные различия расстояний до разных звезд, он сделал вывод, что поэтому соотношение их видимого блеска может быть обманчивым. Он разделял небесные тела на самосветящиеся - звезды, солнца, и на темные, которые лишь отражают солнечный свет. Бруно утверждал, во-первых, изменяемость всех небесных тел, полагая, что существует непрерывный обмен между ними и космическим веществом, во-вторых, общность элементов, составляющих Землю и все другие небесные тела, и считал, что в основе всех вещей лежит неизменная, неисчезающая первичная материальная субстанция.

Именно Бруно принадлежит первый и достаточно четкий эскиз современной картины вечной, никем не сотворенной, вещественной, единой, бесконечной, развивающейся Вселенной с бесконечным числом очагов Разума в ней.

Новый взгляд на мир и человека в эпоху Возрождения позволил сделать выдающиеся открытия и создать новые теории, ставшие прологом научной революции XVI-XVII вв., в ходе которых оформилось классическое естествознание.

Глава 6. Научная революция XVI-XVII вв. и становление классической науки

Отправной точкой научной революции, в результате которой появилась классическая наука и современное естествознание, стал выход книги Николая Коперника "О вращении небесных сфер" в 1543 г. Но гелиоцентрические идеи, высказанные там, были всего лишь гипотезой, нуждавшейся в доказательстве. Поиск аргументов в пользу этой гипотезы и стал основной задачей научной революции XVI-XVII вв., которая начинается с работ И. Кеплера.

И. Кеплер -- великий астроном и математик

После работ Коперника дальнейшее развитие астрономии требовало значительного расширения и уточнения эмпирического материала, наблюдательных данных о небесных телах. Европейские астрономы продолжали пользоваться старыми античными результатами наблюдений. Но они устарели и часто были неточны. Проводимые же в ту пору европейскими астрономами наблюдения характеризовались большими погрешностями.

Кардинальные изменения наметились только в последней четверти XVI в. в трудах величайшего астронома мира Иоганна Кеплера (1531-1630).

Этот великий немецкий ученый (с удивительной судьбой, жизнь которого была полна невзгод и лишений) совершил величайший научный подвиг -- заложил фундамент новой теоретической астрономии и учения о гравитации. Он показал, что законы надо искать в природе, а не выдумывать их как искусственные схемы и подгонять под них явления природы.

Его первая книга, изданная в 1597 г., вышла под интересным названием "Космографическая тайна". В этой работе, находясь под влиянием пифагорейцев о всемогущей силе чисел, Кеплер поставил задачу найти числовые отношения между орбитами планет. Пробуя различные комбинации чисел, он пришел к геометрической схеме, по которой можно было отыскивать расстояния планет от Солнца.

В 1609 г. в Праге вышла в свет книга Кеплера "Новая астрономия, или Небесная физика с комментариями на движение планеты Марс по наблюдениям Тихо Браге".

В этой книге и были сформулированы первые два закона о движении планет.

1. Все планеты движутся по эллипсам, в одном из фокусов которых
находится Солнце.

2. Радиус-вектор, проведенный от Солнца к планете, за равные
промежутки времени описывает равные площади.

В 1619 г. выходит произведение Кеплера "Гармония мира", содержащее третий закон небесной механики: квадраты периодов обращения планет относятся как пути больших полуосей их орбит.

Кроме уже названных выше работ, Кеплер является автором оптических трактатов "Дополнения к Вителло", "Диоптрика". В работах по оптике он дает теорию камеры-обскуры, излагает теорию зрения, исправляя ошибки Алхазена, правильно объясняет близорукость и дальнозоркость, описывает конструкцию телескопа (трубы Кеплера), рассматривает ход лучей в линзах, приходит к выводу о существовании полного внутреннего отражения, находит фокусные расстояния плосковыпуклой и двояковыпуклой линз.

Из математических работ Кеплера наиболее известны "Рудольфовы таблицы" - это астрономические планетные таблицы, над которыми Кеплер работал более 20 лет. Названы они были так в честь императора Рудольфа II. Эти таблицы в течение почти двух веков служили морякам и астрономам, составителям календарей и астрологам и только в XIX в. были заменены более точными. Своими работами по математике Кеплер внес большой вклад в теорию конических сечений, в разработку теории логарифмов, способствовал разработке интегрального исчисления и изобретению первой вычислительной машины.

Для установления истинного сложного характера причин орбитального движения планеты требовалось уточнение основных физических понятий и создание основ механики.

В формировании классической механики и утверждении нового ми-ровоззрения велика заслуга Г. Галилея.

Г. Галилей -- один из основоположников опытного естествознания и новой науки

Основы нового типа мировоззрения, новой науки были заложены Галилеем (1564-1642). Он начал создавать ее как математическое и опытное естествознание.

В 1586 г. появляется первое небольшое сочинение Галилея о сконструированных им гидростатических весах. А в 1589 г. двадцатипятилетний Галилей назначается профессором математики в Пизанский университет.

Три года работы Галилея в Пизанском университете овеяны рядом легенд. Одна из них рассказывала о публичных опытах молодого профессора по сбрасыванию тел с "падающей" Пизанской башни. Подобные опыты Галилей проводил для опровержения учения Аристотеля о пропорциональности скорости падения весу тела. Галилей брал два тела, одинаковых по форме и размерам, например, чугунный и деревянный шары, чтобы отвлечься от влияния побочных обстоятельств (не учитывать сопротивления воздуха). Находя соотношения между скоростью и временем падения шаров, между пройденным путем и временем падения, он доказал, что тела падают с одинаковым ускорением.

В 1592 г. Галилей стал профессором университета в Падуе, где проработал 18 лет (по 1610 г.). Это был самый плодотворный период его деятельности. В эти годы он занимается вопросами механики (падение тел, движение их по наклонной плоскости и под углом к горизонту), гидро-статикой, теорией простейших машин и сопротивлением материалов. К концу падуанского периода Галилей открыто выступает против системы Птолемея - Аристотеля.

Услышав об изобретении зрительной трубы, Галилей начал работать над ее конструкцией. Первая труба, созданная им в течение года, давала увеличение в 3 раза. Вскоре он изготовил трубу с увеличением в 32 раза. Направив эту трубу на небо, Галилей обнаружил горы на Луне, четыре спутника у Юпитера, фазы Венеры. Млечный Путь оказался состоящим из множества звезд, число которых росло с ростом увеличения трубы. Все это не соответствовало взглядам Аристотеля о противоположности земного и небесного, а подтверждало систему Коперника. Галилей пишет "Звездный вестник", где спокойным, деловым тоном дает отчет о своих наблюдениях и делает выводы. Книга произвела на современников ошеломляющее впечатление. Галилея стали называть "Колумбом неба".

В 1612 г. Галилей издает свой труд "Рассуждения о телах, пребывающих в воде, и тех, которые в ней движутся". Работа была направлена против механики Аристотеля. Вслед за ней появляется письмо Галилея о солнечных пятнах. Это было уже столкновение с Аристотелем на главном участке, и оно не могло пройти не замеченным церковью. В своих доносах в святую инквизицию перипатетики1 обвиняли Галилея в том, что он доказывает движение Земли и неподвижность Солнца. Они пытаются добиться запрещения учения Коперника.

С 1616 по 1623 гг. Галилей хотя и молчит, но много работает, скрывая результаты своих трудов от внешнего мира. В 1629 г. Галилей закончил свою основную работу "Диалог о двух главнейших системах мира: Птолемеевой и Коперниковой". По этому поводу он писал: "Я довел почти до пристани мой "Диалог" и раскрыл весьма явственно многое, что мне казалось почти не-объяснимым". В "Диалог" вошли все произведения Галилея, все то, что было создано им с 1590 по 1625 г. Цель ученого - представить не только астрономические, но и механические доводы в пользу истинности учения Коперника.

Опровергая аргументы Птолемея против вращения Земли путем разбора множества механических явлений, Галилей приходит к открытию закона инерции и механического принципа относительности. Открытием закона инерции было ликвидировано многовековое заблуждение, выдвинутое Аристотелем, о необходимости постоянной силы для поддержания равномерного движения. Оказалось, что равномерное и прямолинейное движение, равно как и покой, может существовать при отсутствии всяких сил. Это имело огромное не только чисто научное, но и мировоззренческое значение. Как известно, к инерциальным системам отсчета относятся покоящиеся (неподвижные) системы и системы, которые движутся относительно неподвижных равномерно и прямолинейно. Равноправность таких систем Галилей доказывает различными опытами и логическими рассуждениями. В результате он приходит к очень важному выводу: "Никакими механическими опытами, проведенными внутри системы, невозможно установить, покоится система или движется равномерно и прямолинейно". Это и есть механический принцип относительности.

Книга Галилея "Диалог" вызвала восторг в научных кругах всех стран и бурю негодования среди церковников. Иезуиты немедленно начали кампанию против Галилея, которая привела ко второму процессу инквизиции в 1633 г. Инквизиция пригрозила Галилею не только осудить его как еретика, но и уничтожить все его рукописи и книги. От него требовали признания ложности учения Коперника. Галилей вынужден был уступить. Ценой тягчайшей моральной пытки, невероятных унижений перед теми, кого он так страстно бичевал в своих произведениях, Галилей купил возможность завершения своего дела.

Галилей по праву считается одним из основоположников опытного естествознания и новой науки. Именно он впервые сформулировал требования к научному эксперименту, состоящие в устранении побочных обстоятельств, в умении видеть главное и отвлечься от несущественного. Путем эксперимента Галилей опроверг учение Аристотеля о пропорциональности скорости падения весу тела. Он был первым, кто направил зрительную трубу на небо в научных целях, тем самым значительно расширив сферу познания. Это был переворот в мировоззрении и методе науки: бесконечная Вселенная могла исследоваться методами земной механики.

Галилей верил в силу человеческого разума, в бесконечность познания: "Кто возьмет на себя смелость поставить предел человеческому духу? Кто решится утверждать, что мы знаем все, что может быть познано?". Большое внимание он обращал на полноту и точность формулировок выдвигаемых положений. Следует заметить, что работы Галилея написаны языком, близким к современному.

Что же Галилей конкретно сделал в механике? Он пришел к открытию закона инерции и сформулировал механический принцип относительности движения, обобщенный позднее А. Эйнштейном. Галилей впервые дал строгое определение равноускоренного движения, нашел законы изменения скорости и пути в этом движении. Он показал, что такое движение свойственно свободно падающему телу.

Галилей доказал, что тело, брошенное под углом к горизонту, будет лететь по параболе. Он дал метод расчета траектории для любых углов вылета и различных начальных скоростей, показав, что наибольшая дальность полета достигается при вылете тела под углом 45° к горизонту.

Страницы: 1, 2, 3, 4, 5


ИНТЕРЕСНОЕ



© 2009 Все права защищены.