бесплатно рефераты
 

Інсулін

Інсулін

2

Вищий навчальний заклад

ЗАПОРІЗЬКИЙ НАЦІОНАЛЬНИЙ

УНІВЕРСИТЕТ

Міністерства освіти та науки України

Реферат:

На тему: " Інсулін"

Підготувала: студентка 3го курсу

Біологічного факультету

Гр. 7336-Б

Уляніцька Г. В.

Перевірила: Генчева Вікторія

Іванівна

Запоріжжя 2009

Зміст

  • Вступ 3
  • Відкриття та дослідження молекули інсуліну 5
  • Будова молекули інсуліну 9
  • Біосинтез інсуліну, регуляція секреції інсуліну 10
  • Перетворення інсуліну в організмі 13
  • Біологічна дія інсуліну 16
  • Порушення в синтезі, і секреції інсуліну 18
  • Методи визначення інсуліну 26
  • Препарати інсуліну 27
  • Інсулінова проба 29
  • Висновок 31
  • Список використаної літератури 32
Вступ

Основною ознакою будови залоз внутрішньої секреції є відсутність вивідних проток, тому їхні секрети виділяються безпосередньо у кров або лімфу, що їх омиває. Кількість цих секретів невелика, називаються вони гормонами (від грецького слова, яке означає «збудження»). Науку, що вивчає будову, функції і захворювання залоз внутрішньої секреції, називають ендокринологією.

До залоз внутрішньої секреції відносяться: гіпофіз, щитовидна, прищитовидні, шишковидна (епіфіз), вилочкова (тімус), наднирники, статеві і підшлункова. Останні дві одночасно є і залозами зовнішньої секреції, тому їх називають змішаними. Значення залоз внутрішньої секреції. Поняття про гормони. Роль гормональної регуляції в організмі. Гормони -- це біологічно активні речовини, які в невеликих кількостях здатні робити на організм значний вплив.

Гормони характеризуються специфічністю, тобто кожний гормон виконує певну функцію і не торкається інших. Гормони, надходячи в кров, виконують свою роль далеко від місця синтезу. В швидкості виникнення ефекту гормони поступаються лише нервовій системі.

Хімічна природа гормонів неоднорідна: видозмінені амінокислоти, білки, поліпептиди, стероїди (органічні сполуки, які належать до групи складних ліпідів, що не піддаються омиленню) та ін. Так, тироксин щитовидної залози є йодованою амінокислотою; інсулін, глюкагон підшлункової залози, соматотропний гормон (росту) гіпофізу -- білки; адреналін, норадреналін наднирників -- катехоламіни (азотомісні органічні сполуки, що утворюються в клітинах організмів з амінокислот у процесі декарбоксилювання) гормони статевих залоз: естрадіол, тестостерон -- стероїди.

Гормони мають сильний вплив на регуляцію обміну речовин, росту, статевого розвитку, функцій окремих органів. Одні гормони здатні підсилювати функцію, а інші -- послаблювати. Отже, завдяки гормонам, що виробляються в залозах внутрішньої секреції, здійснюється регуляція життєдіяльності організму.

У круглоротих залозисті клітини, гомологічні ендокринним панкреацитам, локалізуються в епітелії слизової оболонки кишки, а інсулярний апарат - у власному шарі або в сполучній тканині, яка оточує кишку. Проте у міксин інсулярний апарат утворюється за рахунок скупчення ендокринних клітин і навколо протоки жовчного міхура.

У риб клітинний матеріал, який секретує травні ферменти і гормони, виходить за межі стінки кишки і формується як самостійний орган. У підшлунковій залозі ендокринні клітини розміщуються вздовж середніх і дрібних вивідних проток, оточують їх у вигляді муфти. Чітко ідентифікуються три самостійні типи гормонопродукувальних клітин - А-, В- і В-клітини.

У земноводних ендокринна частина підшлункової залози утворена панкреатичними острівцями, які переважно локалізуються у хвостовій частині залози.

Як і у земноводних, у плазунів ендокринна частина підшлункової залози утворена гормонопродукувальними клітинами, проте залишаються й елементи, властиві хрящовим і костистим рибам.

У підшлунковій залозі птахів значно зростає контрінсулярний компонент її ендокринної частини; це призводить до того, що глюкагону в ній міститься в 10 разів більше, ніж інсуліну. У птахів відбувається повне розділення інсулярного і контрінсулярного апарату, яке розпочалося у рептилій. Очевидно, зазначені зміни забезпечують підтримання високого рівня глікемії і створення певного метаболізму, викликаних екологічними особливостями птахів.

Підшлункова залоза ссавців утворена різними клітинами. Проте тільки А-, В- і В-клітини властиві ссавцям. А-клітини секретують глюкагон, В-клітини секретують інсулін. У всіх ссавців ендокринна частина залози структурно організована у вигляді панкреатичних острівців.

Більш детально я б хотіла розглянути гормон підшлункової залози - інсулін.

Інсулін (від лат. insula -- острів) -- гормон пептидної природи, що утворюється в бета-клітинах острівців Лангерганса підшлункової залози. Робить багатогранний вплив на обмін речовин практично у всіх тканинах. Основна дія інсуліну полягає в зниженні концентрації глюкози в крові.

Ключеві слова: ендокринологія, залози внутрішньої секреції, гормони, інсулін, острівці Лангерганса, амінокислотний залишок, поліпептид, інсулоцити, цукровий діабет, інсулома, гіпоглікемія, синдром 3оллінгера--Еллісона інсулінова проба, обмін речовин, біосинтез, секреція.

Відкриття та дослідження молекули інсуліну

У 1869 році в Берліні 22-річний студент-медик Поль Лангерганс досліджуючи за допомогою нового мікроскопу будову підшлункової залози, звернув увагу на раніше не відомі клітини, створюючі групи, які були рівномірно розподілені по всій залозі. Призначення цих «маленьких купок клітин», надалі відомих як «острівці Лангерганса», було не зрозуміле, але пізніше Едуад Лагус показав, що в них утворюється секрет, який грає роль в регуляції травлення.

У 1889 році німецький фізіолог Оскар Мінковський (Oscar Minkowski) щоб показати, що значення підшлункової залози в травленні надумане, поставив експеримент, в якому провів видалення залози у здорового собаки. Через декілька днів після початку експерименту, помічник Мінковські, який стежив за лабораторними тваринами, звернув увагу на велику кількість мух, які зліталися на сечу піддослідного собаки. Дослідивши сечу, він виявив, що собака з сечею виділяє цукор. Це було перше спостереження, що дозволило зв'язати роботу підшлункової залози і цукровий діабет. У 1901 році був зроблений наступний важливий крок, Евген Опі (Eugene Opie) чітко показав, що «цукровий діабет обумовлений руйнуванням острівців підшлункової залози, і виникає тільки коли ці тільця частково або повністю зруйновані». Зв'язок між цукровим діабетом і підшлунковою залозою був відомий і раніше, але до цього не було ясно, що діабет пов'язаний саме з острівцями Лангерганса.

У наступні два десятиліття було зроблено декілька спроб виділити острівковий секрет як потенційні ліки. У 1906 році Георг Цюльцер (Georg Ludwig Zulzer) досяг деякого успіху в зниженні рівня глюкози в крові піддослідних собак панкреатичним екстрактом, але не міг продовжити свою роботу. Е Скотт (E.L. Scott) між 1911 і 1912 роками в Чиказькому університеті використовував водний екстракт підшлункової залози і відзначав «деяке зменшення глікози», але він не зміг переконати свого керівника у важливості своїх досліджень, і незабаром ці експерименти були припинені. Такий же ефект демонстрував і Ізраель Кляйнер в Рекфелірівському університеті в 1919 році, але його робота була перервана початком Першої світової війни, і він не зміг її завершити. Схожу роботу після дослідів у Франції в 1921 році опублікував і професор фізіології Румунської школи медицини Никола Паулеско, і багато хто, особливо в Румунії, вважають саме його першовідкривачем інсуліну.

Проте практичне виділення інсуліну належить групі вчених Торонтського університету. У жовтні 1920 року Фредерик Бантінг прочитав в роботах Мінковського про те, що якщо у собак перешкоджати виділенню травного соку з підшлункової залози, то залізисті клітки незабаром гинуть, а острівці залишаються живими, і цукровий діабет у тварин не розвивається. Цей цікавий факт примусив його задуматися над можливістю виділення із залози невідомого чинника, сприяючого зниженню рівня цукру в крові. З його записок: «Перев'язати собаці панкреатичну протоку. Залишити собаку, поки не руйнуватимуться ацинуси і залишаться тільки острівці. Спробувати виділити внутрішній секрет і подіяти на глікозурію»

У Торонто Бантінг зустрівся з Дж. Маклаудом (J. Macleod) і виклав йому свої міркування в надії заручитися його підтримкою і отримати необхідне для роботи устаткування. Ідея Бантінга спершу здалася професорові абсурдною і навіть смішною. Але молодому ученому таки вдалося переконати Маклауда підтримати проект. І літом 1921 року він надав Бантінгу університетську лабораторію і асистента, 22-річного Чарльза Беста, а також виділив йому 10 собак. Їх метод полягав в тому, що навколо вивідної протоки підшлункової залози затягувалася лігатура, перешкоджаючи виділенню із залози панкреатичного соку, і опісля декілька тижнів, коли зовнішнєсекреторні клітини загинули, в живих залишалися тисячі острівців, з яких їм вдалося виділити білок, який достовірно знижував рівень цукру в крові у собак з видаленою підшлунковою залозою. Спершу його назвали «айлетін».

Після повернення з Європи, Маклауд оцінив значення всії виконанної його підлеглим роботи, проте для того, щоб бути повністю упевненим в ефективності методу, професор зажадав ще раз переробити експеримент при собі. І опісля декілька тижнів, було ясно, що друга спроба також успішна. Проте виділення і очищення «айлетіну» з підшлункових залоз собак було надзвичайно трудомісткою і тривалою роботою. Бантінг вирішив спробувати використовувати як джерело підшлункові залози ембріони телят, в яких ще не виробляються травні ферменти, але вже синтезується достатня кількість інсуліну. Це істотно полегшило роботу. Після рішення проблеми з джерелом інсуліну, наступним важливим завданням стало очищення білку. Для її вирішення в грудні 1921 року Маклауд привернув блискучого біохіміка, Джеймса Колліпа, який у результаті зумів розробити ефективний метод очищення інсуліну.

11 січня 1922 року, після безлічі успішних випробувань з собаками, страждаючому діабетом 14-річному Леонарду Томпсону була зроблена перша в історії ін'єкція інсуліну. Проте перший досвід застосування інсуліну виявився невдалим. Екстракт опинився недостатньо очищеним, і це привело до розвитку алергії, тому ін'єкції інсуліну були припинені. Наступні 12 днів Колліп напружено працював в лабораторії над поліпшенням екстракту. А 23 січня Леонарду була введена друга доза інсуліну. Цього разу, успіх був повним, не тільки не було явних побічних дій, але і у хворого перестав прогресувати діабет. Проте надалі Бантінг і Бест не спрацьовували з Колліпом і незабаром з ним розлучилися.

Було потрібно навчитися отримувати великі кількості чистого інсуліну. І перш ніж був знайдений ефективний спосіб швидкого промислового отримання інсуліну, була проведена дуже велика робота. Важливу роль в цьому зіграло знайомство Бантінга з Елі Ліллі, майбутнім засновником найбільшої фармакологічної компанії.

За це революційне відкриття Маклауд і Бантінг в 1923 році були удостоєні Нобелевскої премії з фізіології і медицини. Бантінг спершу був сильно обурений, що його помічник Бест не був представлений до нагороди разом з ним, і спочатку навіть демонстративно відмовився від грошей, але потім все ж таки погодився прийняти премію, і свою частину урочисто розділив з Бестом. Також поступив і Маклауд, поділивши свою премію з Колліпом. А патент на інсулін був проданий Торонтскому університету за один долар, і незабаром почалося виробництво інсуліну в промислових масштабах.

Заслуга за визначення точної послідовності амінокислот, створюючих молекулу інсуліну (так звана первинна структура) належить британському молекулярному біологові Фредеріку Сенгеру. Інсулін став першим білком, для якого була повністю визначена первинна структура. За виконану роботу в 1958 році він був удостоєний Нобелівської премії з хімії. А через майже 40 років Дороті Кроуфут Ходжкин за допомогою методу рентгенівської дифракції визначила просторову будову (третинну структуру) молекули інсуліну. Її роботи також відмічені Нобелівською премією.

Будова молекули інсуліну

Відносна молекулярна маса мономера інсуліну складає близько 6000.

Молекула інсуліну утворена двома поліпептіднимі ланцюжками, що містять 51 амінокислотний залишок: ланцюг з N-кінцевим гліцином називається A-ланцюжок, складається з 21 амінокислотного залишку, B-ланцюжок утворений 30 амінокислотними залишками. Поліпептідні ланцюжки з'єднуються двома дисульфідними містками через залишки цистєїну, третій дисульфідний зв'язок розташований в A-ланцюжку.

Цілісність дисульфідного зв'язку грає велику роль у збереженні біологічної активності молекули інсуліну.

Первинна структура інсуліну у різних біологічних видів трохи відрізняється, як відрізняється і його важливість в регуляції обміну вуглеводів. Найбільш близьким до людського є інсулін свині, який розрізняється всього одним амінокислотним залишком: у 30 положенні B-ланцюжка свинячого інсуліну розташований аланін, а в інсуліні людини -- треонін; бичачий інсулін відрізняється трьома амінокислотними залишками; а у риб у порівнянні з тваринним В-ланцюг більше і має 32 амінокислотних залишки.

Близько 25 амінокислот ідентичні у всіх хребетних. У зв'язку з цим імунологічні відмінності інсулінів людини і тварин невеликі, що дає можливість застосовувати в клініці інсуліни тваринного походження (бичий, свинячий).

Проте при тривалому застосуванні препаратів чужерідного походження інсуліну може все ж проявлятись антигенність гормону, в результаті чого у хворих розвивається високий титр антиінсулінових антитіл і ефективність інсуліну різко падає. У таких випадках необхідно застосовувати інсулін іншого походження.

Молекула інсуліну людини

Біосинтез інсуліну, регуляція секреції інсуліну

Інсулін синтезується у базофільних інсулоцитах ( ?-клітинах)острівців Лангерганса підшлункової залози із свого попередника - проінсуліну.

Синтез інсуліну відбувається в ?-клітках і починається з утворення на рибосомах одноланцюжкового пептиду, що складається з 104--110 амінокислотних залишків, -- препроінсуліну. Ця молекула включає А-ланцюг, В-ланцюг і розташований між ними вставний С-пептид. Препроінсулін потрапляє в шорсткий ендоплазматичний ретікулум, по якому пересувається до секреторних гранул. У цистернах шорсткого ендоплазматичного ретікулума відбувається відщеплювання частини молекули і залишається преінсулін, що складається з 81--86 амінокислотних залишків. У комплексі Гольджі відбувається упаковка гормону в секреторні гранули, в яких проінсулін піддається подальшому протеолітичному розщепленню. В результаті відщеплюються С-псптид і два діпептида, сполучаючі С-пептид з фрагментами А і В, а ланцюги А і В з'єднуються дисульфідними містками, утворюючи молекулу двохланцюгового інсуліну. У секреторних гранулах виявляються проінсулін, частково розщеплений проінсулін, інсулін і С-пептид. Всі вони виводяться з ?-клітин в кров.

Схема розщеплення проінсуліну.

Кожен кружок показує амінокислотний залишок.

Чорні кружки - С-ланцюг, сірі - А-ланцюг, білі - В-ланцюг, перехрещені - дипептиди, вищепленні в процесі утворення активного гормона.

Поліпептидна основа молекули інсуліну (первинна структура) згорнута спіралеобразно (вторинна структура), а спіралі, у свою чергу, згущуються в складні утворення, що визначають просторову конфігурацію молекули інсуліну або її третинну структуру.

Просторова конфігурація молекули бичого інсуліну

Інсулін і проінсулін легко полімеризуються, утворюючи димери, тримери, гексамери. Полімеризація відбувається шляхом комплексирування з цинком. При цьому утворюються малорозчинні комплекси, і гормон депонується в секреторних гранулах. Гормон, що депонує, -- резерв, який може бути швидко реалізований під впливом відповідного стимулу.

Секреторні гранули (тример Zn-інсулін)

Секреторні гранули забезпечують і внутриклітинний транспорт гормону. Гранули пересуваються за системою мікротрубочок і мікрофіламентів у напрямку до плазматичної мембрани (Леци і соавт., 1973). Мембрана гранули і плазматична мембрана з'єднуються, а матеріал, що міститься в гранулах, викидається в позаклітинний простір, тобто відбувається еміоцитоз.

Секреторний процес в інсулоциті ( за Леці, 1972)

Важливо відзначити, що рух секреторних гранул і контакт їх мембран з плазматичною мембраною здійснюються за участю іонів кальцію і цАМФ. Не можна виключити і можливість розчинення гранул поблизу плазматичної мембрани і виділення гормону через певні її ділянки (У. М. Гордієнко, В. Р. Козиріцкий, 1978).

Виведення інсуліну у відповідь на дію стимулу відбувається двофазний: перша -- швидка фаза (протягом 1хв після дії стимулу) і друга -- через 20--30хв. Мабуть, спочатку секретується інсулін, розташований поблизу мембрани (у гранулах або розчинений), а потім мобілізуються і транспортуються секреторні гранули за системою мікротрубочок і мікрофіламентов.

Процесинг інсуліну у підшлунковій залозі

Перетворення інсуліну в організмі

З ?-клітин інсуліну поступає в кров, де міститься у двох формах: вільною і зв'язаною з білками (Антоніаді, 1961 -- 1964). Вільний інсулін проявляє дію на всі інсуліночуттєві тканини (м'язи, жирова тканина, печінка, мозок), а зв'язаний -- тільки на жирову тканину, що володіє здатністю звільняти інсулін від зв'язку з білком. Між змістом вільного і зв'язаного інсуліну існує динамічна рівновага: при підвищеній потребі організму в інсуліні (наприклад, після їжі солодкої їжі) збільшується кількість вільної фракції і зменшується зміст зв'язаного інсуліну, а натщесерце переважає зв'язаний інсулін.

Скріплення інсуліну має великий фізіологічний сенс. По-перше, якби інсулін знаходився тільки у вільному вигляді, то він захоплювався б головним чином м'язовою тканиною і не встигав поступати в жирову тканину, де украй необхідний. По-друге, з'єднання інсуліну створює певний резерв гормону, який може бути мобілізований при надмірному постачанні або утворенні вільних вуглеводів. І, по-третє, скріплення інсуліну оберігає тканини від його надмірної дії, оскільки зв'язаний інсулін, що має молекулярну масу 50000--100000, не володіє такою здатністю проходити через судинну стінку, як вільний.

Крім вільного і зв'язаного інсуліну, описана ще одна форма гормону, умовно названа формою А (Л. До. Старосельцева, 1971--1972). Ця форма за біологічними і физико-хімічними властивостями займає як би проміжне положення між вільним і зв'язаним інсуліном. Передбачається, що форма А уцтворюється в тих випадках, коли потрібне швидке задоволення потребі організму в інсуліні.

Як указувалося, разом з інсуліном в кров поступають проінсулін і С-пептид.

Проінсулін реагує зі всіма інсулінчуттєвими тканинами, але биологічна активність його значно менша, ніж у инсуліна. У нормі в периферичній крові проінсулін складає не більше 20% загального іммунореактивного інсуліну, а в патологічних умовах кількість його і С-пептида може значно зростати. Відповідно знижується біологічний ефект інсуліну.

У здорової людини вміст інсуліну в плазмі крові натщесерце, визначуване радіоімунологічними методами, складає приблизно 5--26 мк МЕ/мл або 1,25±0,08 нг/мл. Попереднє голодування знижує його, а тривале надмірне введення їжі, особливо багатої на вуглеводи, збільшує.

Секретованний підшлунковою залозою інсулін поступає по комірній вені спочатку в печінку, де затримується близько 50% гормону.

Руйнування інсуліну здійснюється ферментом інсуліназою, що знаходиться в найбільшій кількості в печінці і нирках, а продукти розпаду виводяться з сечею. Біологічне значення цього ферменту полягає в тому, що він оберігає організм від надмірного надходження інсуліну в загальний круг кровообігу і пов'язаних з цим порушень обміну вуглеводів (гіпоглікемія). Цікаво, що активність інсулінузи виявляє вікові відмінності. У молодих статевонезрілих щурів активність інсулінузи значно менша, ніж у дорослих тварин. Мабуть, це має важливий фізіологічний сенс, оскільки «зберігає» інсулін для підвищених потреб організму, що росте (З. М. Лейтес, Н. П. Смирнов, 1959).

При старінні активність інсулінузи знижується (В. В. Фролькис і ін., 1968), що розцінюється як своєрідний пристосовний механізм, направлений на підтримку постійного рівня цукру в крові.

Регуляція секреції інсуліну здійснюється головним чином гуморальним шляхом. Найважливішим стимулом секреції інсуліну є рівень глюкози в крові. Підвищення його підсилює секрецію інсуліну, а зниження -- гальмує. Це можна показати навіть на ізольованій з організму підшлунковій залозі, поміщеною в живильне середовище. З цією метою через судини ізольованої залози пропускають розчини глюкози різної концентрації і визначають кількість виділеного інсуліну. При пропусканні рідини з концентрацією глюкози 40--50 мг% інсулін не виділяється, а при перфузії рідиною із змістом глюкози 300-- 500 мг% підшлункова залоза активно секретує його. Таким чином ?-клітини острівців Лангерганса чутливі до рівня цукру в крові. Після внутрішньовенного введення глюкози вміст інсуліну в крові підвищується вже через 1 хв.

Страницы: 1, 2


ИНТЕРЕСНОЕ



© 2009 Все права защищены.