бесплатно рефераты
 

Иммунитет растений к насекомым и клещам

Иммунитет растений к насекомым и клещам

http://monax.ru/order/ - рефераты на заказ (более 1100 авторов в 270 городах СНГ).

7

Содержание

Предисловие. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3

Введение . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

Глава 1. Фитоиммунитет и его виды (основные термины и механизмы действия) . 4

Глава 2. Типы повреждений растений насекомыми и клещами . . . . . . . . . . . . . . . . 10

Глава 3. Связь между устойчивостью к вредителям и поражением растений возбудителями заболеваний. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12

Глава 4. Основные факторы групповой и комплексной устойчивости растений к патогенным агентам . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13

Глава 5. Перспективы и некоторые принципы создания комплексно устойчивых сортов . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . .16

Глава 6. Пути селекции устойчивых сортов. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16

§ 6.1 Селекция. . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . 16

§ 6.2. Получение трансгенных и мутантных растений (изолированные протопласты, генная инженерия) . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . 18

Глава 7. Перспективы и роль иммунологии. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Литература . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22

Предисловие

Тенденции развития современной науки и морали таковы, что мы все более склонны искать ответы в естественности, самой природе.

Начало земледельческой деятельности человека явилось мощным толчком для развития нашей цивилизации. Однако создание огромных территорий агробиоценозов послужило самостоятельной причиной массового размножения и расселения существующих видов фитофагов, а также возникновения новых их форм.

Именно в связи с этим человечество, переводя растениеводство на промышленную основу, было вынуждено, образно говоря, взять заботу о защите растений на себя (Член-корреспондент Академии наук СССР Скарлато А.О., Председатель научного Совета по проблемам охраны окружающей среды междуведомственного координационного Совета АН СССР в Ленинграде, Директор Зоологического института АН СССР).

Последовавшее вслед за развитием промышленности непомерное использование агрохимических средств защиты нередко являлось причиной нарушения экологического равновесия в биосистемах и массовой гибели людей.

Несмотря на мощное развитие в настоящее время агрохимической индустрии, возможности ее далеко не беспредельны. Реальность же такова, что зачастую использование химических средств защиты растений от насекомых-вредителей не соответствует современным стандартам по охране окружающей среды ГосКомПрироды и приводит к химическому загрязнению (в частности загрязнению пестицидами).

Это, а также постоянная интенсификация растениеводства привели к необходимости нахождения новых методов защиты растений от повреждения различными биологическими объектами. Таковыми методами являются переход на возделывание сортов и гибридов сельскохозяйственных растений с групповым и комплексным иммунитетом к вирусам, микоплазмам, грибам и беспозвоночным, а также применение биологических методов защиты культивируемых растений.

По словам одного из создателей отечественной фитоиммунологии Шапиро И.Д. потребность в сортах, иммунных к вредителям, на протяжении научно-технического прогресса в сельском хозяйстве будет увеличиваться. Причем в особенности возрастет значение таких сортов при переходе от интегрированной защиты растений к управлению агробиоценозами (Шапиро, 1985).

Введение

Существует множество средств защиты растений от повреждения их различными биологическими объектами, в том числе и насекомыми. Самый тривиальный и, наверное, древний метод - механическое их уничтожение. Но при современных масштабах развития сельского хозяйства это неуместно, просто смешно.

Метод химической защиты, как уже было сказано выше, часто приводит к негативным последствиям, да и коэффициент полезного действия этого метода в современных условиях ничтожно мал.

Сочетание же биологического метода защиты с созданием и усилением у культурных сортов растений иммунных механизмов защиты от вредоносных биологических агентов приобретает все большее значение для интенсивного развития сельскохозяйственной деятельности. Намного легче предупреждать заболевание, чем вылечивать его и последствия им вызванные.

Несмотря на все вышесказанное, использование последнего метода мало распространено в связи с отставанием селекции с-ох-ых культур, устойчивых к вредителям и неизученностью темы.

Именно перспективностью и широким полем для исследований данная тема привлекла к себе мое внимание и подвигла на более глубокое изучение данной области науки.

Глава 1. Фитоиммунитет и его виды (основные термины и механизмы действия)

Целесообразно оговорить термины, применяемые в данной области биологии.

Иммунитет (от лат. immunitas - освобождение, избавление) способность живых существ противостоять действию повреждающих агентов, сохраняя свою целостность и биологическую индивидуальность; защитная реакция организма (Советский энциклопедический словарь, 1984).

Иммунитет растений к вредным организмам (фитоиммунитет) - важнейшее биологическое свойство растений, эволюционно возникшее в результате длительного сосуществования (длительной коадоптации) с консументами, и поддерживающее стабильность взаимоотношений фитофагов и их растений-хозяев в естественных экосистемах (Шапиро, 1985).

Потребность в научных исследованиях такого рода дали основание для развития такой науки как иммунология растений. Говоря о становлении учения об иммунитете растений к насекомым и клещам как самостоятельного направления науки и людях, сделавших огромный вклад, необходимо назвать имена таких крупных ученых, как Н.И. Вавилов, В.Н. Щеголев, Л.Н. Сахаров, Н.В. Курдюмов, П.Г. Чесноков, Р. Пайнтер (США) и др. В этот ряд необходимо вписать одного из выдающихся ученых современности - И.Д. Шапиро. Его определение данной ветви энтомологии звучит следующим образом:

иммунология растений - специфическая область знаний, в основе которой - выяснение закономерностей взаимоотношений между фитофагами и их кормовыми растениями, сложившихся в процессе их эволюции. По своей сути иммунология растений - пограничная наука, основывающаяся на анализе и синтезе знаний и методик многих наук зоологического и ботанического циклов (энтомологии, акарологии, экологии и, в особенности, биоценологии, паразитологии, физиологии и биохимии животных и растений и, в частности, физиологии и биохимии питания и пищеварения, этологии и токсикологии насекомых, а также ботаники, селекции растений, генетики и т.д.) (Шапиро, 1985).

Отдельным термином выделяют иммунитет растений к растениеядным организмам (фитофагам, фитоксенам, консументам) - антифитоксенный фитоиммунитет.

Различные степени иммунного ответа могут варьировать от абсолютного иммунитета растения к вредоносному агенту (абсолютная неподверженность, непоражаемость данному воздействию) до относительного (неабсолютного) иммунитета. Это позволяет феноменологически выделять:

во-первых, иммунные растения, абсолютно устойчивые к воздействиям тех или иных фитофагов, либо инфекций;

во-вторых, растения с высокой степенью проявления относительного иммунитета, слабо повреждаемые фитофагом (не уменьшающим биологическую продуктивность, а, возможно, даже вызывающие эффект стимуляции роста у растения-реципиента) или вызывающие у фитофага депрессию размножения;

в-третьих, иммунные растения со средней степенью иммунитета, повреждаемые вредоносными организмами более или менее существенно (на посевах таких растений развитие и размножение вредоносных организмов осуществляется еще с заметными трудностями, в связи с чем использование значительных количеств пестицидов не требуется);

в-четвертых, слабоиммунные растения - более сильно повреждаемые (на их посевах размножение вредоносных организмов подвергается лишь слабой депрессии, и урожай их существенно снижается, что приводит к необходимости применения пестицидов);

в-пятых, неиммунные растения - сильно повреждаемые вредоносными организмами (такие растения способствуют массовому размножению фитофагов и возбудителей инфекционных заболеваний, что требует значительного применения пестицидов и других защитных мероприятий).

Биологическая система «возбудитель инфекционного заболевания - растение-реципиент» характеризуется случайностью возникновения при наличии тесных и постоянных связей и компонентов. Биологическая система «фитофаг -

растение-хозяин», как результат коадоптации животных-фитофагов и кормовых растений, также чрезвычайно сложна. Одна из характеристик развития этой системы - приобретение фитофагами способности к активному и целенаправленному поиску условий для питания и откладывания яиц (органов и тканей растений, находящихся на определенных этапах онтогенеза) (Шапиро, 1985).

Автономное существование, способность насекомых и других вредоносных животных к локомоции и наличие у них сенсорных систем обуславливает возможность вступления в контакт с кормовыми растениями лишь на особых этапах онтогенеза. В связи с этим у растений выработались характерные барьеры для патогенного воздействия.

У систем «насекомое-фитофаг - растение» хорошо развиты барьеры, ограничивающие выбор насекомыми растений для их заселения, питания и откладывания яиц. Поиск растений, поглощение и переваривание при питании их тканей и всасывание гидролизованной пищи - энергоемкие процессы, требующие от консументов больших энергетических затрат.

Вырабатываемые у растений в процессе филогенеза механизмы защиты от фитофагов и преодоление последними этой защиты привела к возникновению среди консументов специализированных групп, приуроченных к растениям с определенным систематическим положением (выделению среди них видоспецифичных семейств, родов и видов).

Растения высокого таксономического ранга (начиная с семейств) наиболее характерен абсолютный иммунитет к специализированным фитофагам, адаптировавшимся к питанию растениями иных таксономических групп. На родовом, видовом и внутривидовом (сортовом) уровнях проявления иммунитета растений к патогенным воздействиям растениеядных организмов носят относительный характер.

На основе работ В.Н. Щеголева (1938), П.Г. Чеснокова (1953) и Р. Пайнтера (R. Painter) (1951) была разработана классификация различных проявлений иммунитета растениями.

Вариации реагирования растения-риципиента на патогенное воздействие со стороны фитофага разделяют на три категории (см. схему - табл. 1 (Шапиро, 1985)):

1. антиксеноз - проявления, выражающиеся в отвергании или избегании фитофагами растений при попытке их использования для питания и (или) откладывания яиц;

2. антибиоз - проявления, выражающиеся в неблагоприятном воздействии кормового растения на фитофагов при использовании тканей этого растения в пищу (обусловленные повреждающим эффектом физиологически активных соединений растений, или несоответствием молекулярного строения основных биополимеров: белков, жиров и углеводов растений пищеварительным ферментам фитофагов, что нарушает нормальное функционирование различных физиологических систем организма последних, вызывая их угнетение и даже отмирание);

3. толерантность растений к патогенному воздействию животного агента выражается в проявлении этим растением способности к сохранению биологической продуктивности (урожая) без значительного его уменьшения, при отсутствии неблагоприятного воздействия на патоген.

Работами наших ученых (Шапиро и Вилкова, 1979; Вилкова, 1980) было установлено существование у растений конституциональных и индуцированных иммуногенетических барьеров.

Конституциональные барьеры - защитные барьеры, обусловленные своеобразием морфологической конституции, обеспечивающие иммунитет растений (внешнее и внутреннее строение растений, а также отличия их метаболизма и жизнедеятельности, оказывающее влияние на их онто- и морфогенез).

К данной категории барьеров принадлежат:

1. атрептический или деполимеризационный барьер, обусловленный структурными различиями белков, жиров и углеводов растений и способствующий уменьшению их атакуемости и разрушению ферментами фитофагов (недостаточная глубина и скорость деполимеризации белков, жиров и углеводов - мощный фактор иммунитета, в основе его эффекта - недостаточное молекулярное соответствие ферментов фитофагов и подвергающихся их воздействию биополимеров растений, его проявление - свойство растений иммунных сортов, при питании такими растениями потребность фитофагов в энергетических и пластических ресурсах удовлетворяется не полностью, что приводит к дистрофии - неполному голоданию и даже гибели, так как энергетические затраты на поиск, поедание, переваривание и всасывание пищи возмещается не полностью - (Вилкова и Шапиро, 1976; Вилкова, 1980));

2. морфологический барьер, обусловленный генетическими отличиями в процессах дифференциации и в строении органов, тканей и клеток растений, затрудняющими и даже предотвращающими их использование фитофагами как среды обитания и источника пищи;

3. ростовой барьер, обусловленный различной скоростью процессов роста вегетативных и репродуктивных органов растений и всего растения в целом (существенный в связи с тем, что при высоких темпах роста частей тела организма растения-риципиента возникают препятствия для нормального развития яиц, отложенных насекомыми-фитофагами на быстро растущие органы, ослабляется их контакт и контакт личинок с растительной тканью - субстратом и происходит своего рода самоочищение последней (Шапиро, 1958а);

4. физиолого-метаболический барьер, обусловленный различиями иммунных и неиммунных растений по физиологическим параметрам и характеристикам обмена веществ;

5. онтогенетический барьер, обусловленный отличиями жизненного цикла иммунных и неиммунных растений, несовпадением во времени диахронических параметров их индивидуального развития (периодов, стадий, фаз).

Предназначение конституционных барьеров фитоиммунитета - всесторонняя и постоянная защита от вредоносных организмов, осуществляющаяся на всех уровнях организации растений от молекулярного до организменного (Вилкова, 1980).

Индуцированные барьеры фитоиммунитета возникают у растений при их повреждении. Предназначение индуцированных барьеров - локализация вредоносных агентов, изоляция последних от нормально функционирующих, неповрежденных, тканей и последующие избавление от последующие избавление от патогенных объектов при отмирании тканей поврежденных. К индуцированным барьерам принадлежат:

1. некрогенетический барьер (в особенности эффективный по отношению к некоторым минирующим и сосущим фитофагам) - отмирание клеток, клеточных комплексов, участков тканей и отдельных органов, индуцируемое при их повреждении фитофагами, приводящее к пространственной изоляции фитофагов от непосредственно не поврежденных частей растений и затрудняющее их питание;

2. репарационный барьер - образование гомологичных органов, морфологически и функционально замещающих поврежденные или же уничтоженные (например, один из побегов другими, один из листьев другими, вновь образующимися листьями и т.д.);

3. галлогенетический и тератогенетический барьеры - возникновение патологических новообразований - галлов и паразитарных тератоморф - среды обитания и источника пищи консументов (Слепян, 1973);

4. оксидативный барьер - окисление веществ вторичного обмена растений в процессе повреждения их тканей фитофагами (приводящее к усилению токсичности веществ вторичного обмена и (или) образованию соединений, вызывающих у патагенов нарушение функционирования и гибель);

5. ингибиторный барьер - возникновение у растений-риципиентов, поврежденных фитофагами, соединений, обладающих ингибиторными функциями (подавляющими деятельность гидролитических и иных ферментов - амилаз, протеаз и т.д.).

Рассмотренные выше иммунологические барьеры возникли у растений-риципиентов в ходе эволюционных изменений как бы в противовес адаптациогенезу различных фитофагов в естественном противостоянии - «хищник-жертва» или «паразит-жертва». Акт питания насекомых и клещей ­ процесс, связанный с большими энергетическими затратами, последовательная смена действий в процессе их пищедобывающей деятельности. После нахождения фитофагом растения-риципиента, им осуществляется выбор на нем места, подходящего для питания, начинаются механические воздействия на растительные ткани, их отторжение и заглатывание. При питании на растениях устойчивых сортов затрачивается в 2-3 раза больше времени, а, следовательно, и энергии на биохимические реакции внутри организма-патогена на каждый акт питания. Это было установлено, например, при исследовании вредной черепашки (Eurygaster integriceps Put.) (Вилкова и Степанова, 1971).

Обоснован вывод, что энергетический принцип должен широко использоваться при оценке феноменов иммунитета растений к вредителям. Энергетический принцип, безусловно, будет иметь в будущем большое значение в общей теории иммунитета и в теории иммунитета растений к возбудителям заболеваний (Шапиро, 1985).

Использование представлений об информационных связях в экосистемах - теоретическая основа для управления процессами (в первую очередь управление их биологической продуктивностью), происходящими в последних.

Одна из важных подсистем агробиоценозов (см. Шапиро и др., 1979) - система тритрофа (кормовое растение - фитофаг - энтомофаг). Анализ такой трехзвенной системы дает возможность вычленить из многозвенной цепи взаимодействующих организмов главные звенья, по которым и осуществляется основной поток энергии, вещества и информации (Шапиро, 1985).

Иммуногенез - процесс возникновения и формирования системы иммунитета в онтогенезе и на протяжении филогенеза. Установление закономерностей иммуногенеза - одна из основных проблем иммунологии растений и животных, включая человека. Иммунологические барьеры - морфофункциональная система организма, способствующая сохранению его стабильности при повреждающих воздействиях (Шапиро, 1985).

Глава 2. Типы повреждений растений насекомыми и клещами

Взаимодействия насекомых и клещей с растениями весьма многообразны, о чем свидетельствуют различия типов повреждения последних.

Классификация типов повреждения растений вредителями различных видов отражает особенности строения их ротовых аппаратов.

Типы повреждения листьев вредителями с грызущим ротовым аппаратом (Чесноков, 1953; Осмоловский, 1976):

- скелетирование (выедание эпидермы и паренхимы мезофилла с сохранением жилок, наблюдающееся, например, при питании личинок вишневого слизистого пильщика и гусениц лугового мотылька - Pyrausta sticticalis L.);

- «изъязвление» (выедание в форме небольших углублений - язвы - наблюдающиеся, например, при питании земляных и иных блошек);

- окошечное выедание (наблюдающиеся при использовании для питания эпидермы и паренхимы мезофилла с сохранением с одной стороны листа участков кутикулы - характерный признак питания гусениц капустной моли, а также гусениц I-II возрастов некоторых других чешуекрылых);

- фигурное объедание краев листьев (наблюдающиеся, например, при питании долгоносиков рода Sitona и пчел-листорезов);

- минирование (выедание паренхим мезофилла, наблюдающееся, например, при питании личинок свекловичной мухи);

- свертывание или скручивание листьев с помощью паутины или же без нее (наблюдающееся, например, при питании трубковертов Attelabidae и некоторых листоверток Tortricidae).

В тех случаях, когда листогрызущие насекомые поселяются среди листьев всходов или же в листовой трубке злаков у растущих листьев появляются симметрично расположенные отверстия.

Многие грызущие вредители перекусывают наземную и подземную части стеблей, черешки листьев и корни, прогрызают тоннелеобразные ходы в стеблях и листовых черешках или в корнях, поедают вегетативные почки, бутоны, цветоножки, тычинки и пестики. Такие повреждения приводят к потере тургора и к увяданию отдельных частей растения или же всего растения в целом. У злаков после выколашивания в результате нарушения целостности проводящей системы стебля они приводят к белоколосости.

Повреждения растений вредителями с колюще-сосущим ротовым аппаратом резко отличаются от повреждений, вызываемых вредителями с грызущим ротовым аппаратом. Ферменты слюнных желез и иные физиологически активные вещества, выделяемые насекомыми с колюще-сосущим ротовым аппаратом в ткани растений, нарушают в них баланс фитогормонов, гидролизуют их биополимеры, деформируют их проводящую систему и т.д.

Страницы: 1, 2


ИНТЕРЕСНОЕ



© 2009 Все права защищены.