бесплатно рефераты
 

Биосенсоры: основы и приложения

Биосенсоры: основы и приложения

14

Министерство образования Российской Федерации

Пензенский Государственный Педагогический университет им.В.Г. Белинского

КУРСОВАЯ РАБОТА НА ТЕМУ

Биосенсоры: основы и приложения

Проверил

к. б. н. Соловьев В.Б.

Выполнила

Махнова Е.В.

Содержание

  • ВВЕДЕНИЕ 4
    • 1. ОСНОВНАЯ ЧАСТЬ 6
    • 1.1 Сенсоры на основе микроорганизмов 6
    • 1.2 Сенсор для определения усваиваемых сахаров 6
    • 1.3 Глюкозный сенсор 7
    • 1.4 Сенсор уксусной кислоты 9
    • 1.5 Сенсор спиртов 10
    • 1.6 Цефалоспориновый сенсор 11
    • 1.7 Сенсор БПК 13
    • 2. Основные биосенсоры на основе растительных и животных тканей 15
    • 2.1 Биосенсор АМР 16
    • 2.2 Биосенсор мочевины 18
    • 2.3 Цистейповый биосенсор 19
    • 2.4 Митохондриальные биосенсоры 20
    • 2.5 Амперометрические биосенсоры 22
    • 3. Возможное использование биосенсоров, применение биосенсоров в клинической медицине 25
    • 3.1 Газы крови 26
    • 3.2 Мониторинг калия 27
    • 3.3 Глюкоза 29
    • ЗАКЛЮЧЕНИЕ 34
    • СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ 35
ВВЕДЕНИЕ

Биосенсор - это устройство, включающее биологический чувствительный элемент, тесно связанный с преобразователем либо интегрированный с ним. Обычно биосенсор предназначен для формирования цифрового электрического сигнала, пропорционального концентрации определенного химического соединения или ряда соединений. Современная концепция биосенсора в значительной степени связана с идеями Лиланда Кларка-младшего и соавторов, развитыми в 1962г. Авторы предположили, что если бы ферменты можно было иммобилизовать на электрохимических датчиках, то такие "ферментные электроды" расширили бы диапазон аналитических возможностей базового датчика. Последовавшая затем грандиозная работа с бесконечными вариациями этой темы постепенно раздвинула горизонты этой области. Ее нынешнее состояние в какой-то степени характеризуют перечисленные ниже потенциальные чувствительные элементы и преобразователи, которые можно использовать при конструировании биосенсоров: биологические компоненты (целые организмы, ткани, клетки, органеллы, ферменты и тд), преобразователи (потенциометрические, амперометрические, кондуктометрические, оптические, калориметрические, механические, акустические, химические).

Развитие биосенсоров обусловлено усилием исследователей в нескольких направлений. Весьма перспективно е направление исследований - создание новых материалов для конструирования преобразователей или более эффективной связи между компонентами сенсора. Движущей силой в исследовании сенсоров было ярко выраженное инстинктивное понимание возможности их широких практических приложений. Эти исследования стимулировались прежде всего потребностями медицины. Возможность немедленного анализа клинических препаратов, очевидно, одинаково привлекает и врачей, и пациентов, хотя некоторые национальные службы здравоохранения испытывают трудности с внедрением этой философии. Более привлекательной является возможность непрерывного in vivo мониторинга метаболитов, лекарственных препаратов и белков с помощью миниатюрных и портативных систем. Отличным примером клинического приложения является сенсор глюкозы для больных диабетом, ставший классическим объектом исследований в области биосенсоров.

В последние годы возрастает интерес к другим возможным использованиям биосенсоров. Клинические исследования повернулись в сторону ветеринарии и животноводства. Все больше внимания придается качеству продуктов в пищевой промышленности. В этой области давно признано значение быстрых методов оценки сроков хранения, порчи и загрязнения продуктов. Развитие биотехнологии стимулирует разработку методов мониторинга процессов ферментации, что также расширяет возможности непрерывного контроля этих процессов. Проблемы охраны окружающей и промышленной среды стимулировали разработку сенсоров для определения таких вредных веществ, как оксид углерода и гербициды. В то же время интересы военных неизменно сосредоточены на специальных требованиях биологической и химической защиты.

1. ОСНОВНАЯ ЧАСТЬ

1.1 Сенсоры на основе микроорганизмов

В последние годы разработано множество биосенсоров для определения органических соединений. Многие ферментные сенсоры обладают высокой специфичностью по отношению к представляющим интерес субстратам, однако используемые в них ферменты дороги и неустойчивы. Микробные сенсоры состоят из иммобилизированных микроорганизмов и какого-либо электрохимического датчика и пригодны для непрерывного контроля биохимических процессов. Принцип работы микробных сенсоров - это ассимиляция органических соединений микроорганизмами, что регистрируется электрохимическими датчиками.

1.2 Сенсор для определения усваиваемых сахаров

При культивации микроорганизмов на патоке сахарного тростника, содержащей различные сахара, для контроля процесса брожения важно определение суммарного содержания усваиваемых Сахаров в среде. Так, при высокой концентрации сахара наблюдается подавление катаболизма, что приводит к подавлению роста клеток. Восстановленные сахара и сахарозу в культуральных средах можно определять феррицианидным методом. Этот метод, однако, не вполне надежен, поскольку неусваиваемые сахара могут мешать определению.

Усвоение органических соединений микроорганизмами можно оценивать по дыхательной активности последних, которую в свою очередь можно непосредственно измерить при помощи кислородного электрода.

Для непрерывного определения общего содержания усваиваемых Сахаров (глюкозы, фруктозы и сахарозы) в бродильной среде сконструирован микробный сенсор, состоящий из иммобилизованных живых клеток. Общее содержание усваиваемых Сахаров оценивали по потреблению кислорода иммобилизованными микроорганизмами. Добавление аликвотной части глюкозы приводило к увеличению поглощения кислорода в растворе. В результате электродный ток постепенно понижался, пока не достигал некоторого стационарного значения. Время отклика сенсора составляло 10 мин при измерении стационарного тока и 1 мин в импульсном режиме. Существует линейная зависимость между уменьшением тока и концентрацией глюкозы (до 1 мМ), фруктозы (до 1 мМ) и сахарозы (до 0,8 мМ) соответственно. Чувствительность микробного сенсора к этим сахарам оценивается соотношением 1,00: 0,80: 0,92. При использовании растворов, содержащих 0,8 мМ глюкозы, относительное стандартное отклонение для величины уменьшения тока составляло 2%. Общее содержание усваиваемых Сахаров рассчитывали, суммируя значения аналитических сигналов для откликов на глюкозу, фруктозу и сахарозу, при этом разность истинных и расчетных концентраций не превышала 8%. Микробный сенсор помещали в бродильную среду для получения глутаминовой кислоты, где он надежно работал более 10 дней и выдержал 960 измерений.

1.3 Глюкозный сенсор

Для определения глюкозы предложен микробный сенсор, состоящий из иммобилизованных целых клеток Pseudomonas fluorescens и кислородного электрода. Сенсор помещали в исследуемый раствор, который во время измерений насыщали кислородом и перемешивали магнитной мешалкой.

На рис.2.4 показана типичная зависимость сигнала сенсора от времени. При 30"С стационарный ток устанавливался в пределах 10 мин. Точное время отклика зависело от концентрации добавленной глюкозы. При удалении микробного сенсора из раствора и помещении в среду, не содержащую глюкозы, ток постепенно возрастал и возвращался к начальному уровню примерно за 15 мин при 30°С.

Сенсор проявляет слабую чувствительность к фруктозе, галактозе, манозе, сахарозе и не чувствителен к аминокислотам. Поэтому избирательность определения глюкозы при помощи этого микробного сенсора можно считать вполне удовлетворительной. При измерениях стационарного тока зависимость между током и концентрацией глюкозы линейна до концентрации 20 мг/л, причем нижняя граница определяемых концентраций глюкозы составляла 2 мг/л. При содержании глюкозы 10 мг/л значение тока воспроизводилось с точностью +6%. Стандартное отклонение составило 6,5 мг/л при числе опытов более 20.

Микробный глюкозный сенсор позволяет определять концентрацию глюкозы в патоке со средней относительной погрешностью ±10%. Для сравнения глюкозу определяли также ферментным методом; результаты коррелируют с полученными электрохимическим методом.

1.4 Сенсор уксусной кислоты

При выращивании микроорганизмов на уксусной кислоте как источнике углерода избыток кислоты подавляет их рост и, следовательно, ее оптимальную концентрацию следует поддерживать с помощью непрерывного контроля в режиме "на линии".

Пористую мембрану с иммобилизованными дрожжами закрепляли на поверхности тефлоновой мембраны кислородного электрода и покрывали другой газопроницаемой тефлоновой мембраной. Таким образом, микроорганизмы помещались между двумя пористыми мембранами. Микробная сенсорная система состояла из проточной ячейки с водяной рубашкой, магнитной мешалки, перистальтического насоса, автоматического дозатора и самописца, регистрирующего ток.

Принцип работы этого сенсора аналогичен описанному выше. Поскольку ацетат-ионы не могут проходить через мембрану, рН пробы поддерживали существенно ниже рК уксусной кислоты (4,75 при 30°С). Что касается избирательности микробного сенсора по отношению к уксусной кислоте, то следует отметить, что он не чувствителен к таким летучим соединениям, как муравьиная кислота и метанол, или нелетучим компонентам питательной среды, таким, как глюкоза или фосфат-ионы. Tiichosporon brassicae могут потреблять пропионовую, н-бутановую кислоты и этанол, однако при ферментации эти вещества обычно отсутствуют либо их концентрация слишком мала, чтобы мешать определению уксусной кислоты.

Для сравнения концентрацию уксусной кислоты в бродильной среде для производства глутаминовой кислоты определяли описанным микробным сенсором и методом газовой хроматографии. Наблюдается хорошее согласие результатов, полученных двумя методами: коэффициент корреляции равен 1,04 для 26 опытов. Выходной сигнал сенсора (0,29-0,25 мкА) был постоянен (с точностью до +10% от исходного значения) более трех недель, при этом было выполнено 1500 измерений. Теперь этот микробный сенсор выпускается в Японии серийно.

1.5 Сенсор спиртов

В бродильных производствах необходимо непрерывно определять концентрации метанола и этанола в культуральных средах. При использовании спиртов в качестве источника углерода для культивируемых микроорганизмов концентрация спиртов должна поддерживаться на оптимальном уровне, чтобы избежать ингибирования субстратом. Как известно, спирты утилизируются многими микроорганизмами, следовательно, такие микроорганизмы можно использовать для конструирования спиртового сенсора [5].

Этанольный сенсор включает иммобилизованные Trichosporon brassicae и кислородный электрод. Способ иммобилизации клеток и конструкция электрода такие же, как в глюкозном сенсоре.

Для измерений этим сенсором в стационарных условиях требуется много времени, поэтому был использован импульсный метод, обеспечивающий отклик в течение всего 6 мин. Линейная зависимость между уменьшением тока и концентрацией этанола наблюдается в диапазоне концентраций от 2 до 22,5 мг/л. Для пробы с концентрацией этанола 16,5 мг/л разностный токовый сигнал воспроизводим с относительной погрешностью 6%. Стандартное отклонение составило 0,5 мг/л при числе опытов, равном 40.

Сенсор не проявляет чувствительности ни к летучим соединениям, таким, как метанол, муравьиная, уксусная и пропионовая кислоты, ни к нелетучим веществам.

Микробный этанольный сенсор использовали в дрожжевых бродильных средах. Определение концентрации этанола в тех же пробах методом газовой хроматографии дало результаты, сравнимые с полученными при помощи микробного сенсора: коэффициент корреляции составил 0,98 при числе опытов более 20. В диапазоне концентраций этанола 5,5-22,3 мг/л выходной ток сенсора оставался постоянным более трех недель, в течение которых было проведено 2100 анализов. Сейчас этот сенсор выпускается в Японии серийно.

1.6 Цефалоспориновый сенсор

Антибиотики обычно определяют с помощью турбидиметрического или титриметрического микробиологического анализа, однако методики такого определения довольно сложны и непригодны для экспрессных анализов.

Известно, что Citrobac'ter freundii вырабатывает фермент цефалоспориназу, который катализирует реакцию цефалоспорина с выделением протона:

Цефалоспориназа, однако, очень неустойчива и не подходит для изготовления ферментного сенсора. В сенсоре, чувствительном к цефалоспорину, можно использовать целые клетки Citrobacter freundii, которые иммобилизуют в коллагеновой мембране, помещаемой затем в мембранный реактор.

На рис.2.8 показана система для непрерывного определения цефалоспоринов. Она включает реактор мембранного типа с прокладкой в середине. Измерения рН, обусловливаемые ферментативной реакцией, измеряли комбинированным стеклянным электродом и регистрировали с помощью самописца.

При введении в реактор растворов, содержащих различные количества цефалоспоринов, разность потенциалов на электродах постепенно увеличивалась, пока не достигала некоторого максимума. Минимальное время отклика системы зависело от скорости потока и активности иммобилизованных бактерий в коллагеновой мембране.

При скорости потока 2 мл/мин максимальная разность потенциалов достигалась через 10 мин.

Получена линейная зависимость между максимальной разностью потенциалов и логарифмом концентрации цефалоспорина. С помощью цефалоспоринового раствора определяли 7-фенилацетиламидодезацетоксиспорановую кислоту (7-фенилацетил-ADCA), цефалоридин, цефалотин и цефалоспорин С.

Стабильность микробного сенсора проверяли, анализируя раствор, содержащий 125 мкг/мл 7-фснилацетил-АОСА. Цефалоспорин определяли несколько раз в день, однако наблюдаемая разность потенциалов не менялась в течение недели.

Эту систему применяли также для определения цефалоспорина С в культуральной среде Cephalosporium acremonium. Результаты измерений сравнивали с данными, полученными методом высокоэффективной жидкостной хроматографии. В случае микробного сенсора относительная погрешность составила 8%, следовательно, сенсор вполне пригоден для непрерывного определения цефалоспоринов в ферментационных средах.

1.7 Сенсор БПК

Биохимическое потребление кислорода (БПК) - один из часто используемых показателей загрязнения органическими веществами. Обычно определение БПК требует пятидневной инкубации, поэтому необходим экспрессный метод оценки БПК, дающий более воспроизводимые результаты.

Насыщенный кислородом фосфатный буферный раствор (0,01 М, рН 7) пропускали через проточную ячейку со скоростью 1 мл/мин. Когда измеряемый ток достигал стационарного значения, в ячейку вводили пробу со скоростью 0,2 мл/мин. Значение стационарного тока зависело от БПК анализируемого раствора. Затем ток постепенно возвращался к начальному уровню. Время отклика сенсора (время, требуемое для достижения стационарного тока) зависело от природы анализируемого раствора.

Линейная зависимость между разностью токов (начального и стационарного значений) и БПК, определяемого после пятидневной выдержки в стандартном растворе глюкозы и глутамината, наблюдалась до значения БПК 60 мг/л. Нижняя граница определяемых концентраций составляла 3 мг/л. При анализе раствора с БПК, равным 40 мг/л, ток воспроизводился с относительной погрешностью +6% (число опытов более 10).

Рассматриваемый микробный сенсор применяли для оценки пятидневного БПК необработанных сточных вод бродильного производства. Пятидневное БПК сточных вод определяли также методом JIS (метод, рекомендованный Japanese Industrial Standard Committee). Значения БПК, оцененные микробным сенсором и определенные методом JIS, хорошо коррелировали между собой. С помощью данного сенсора оценивали также БПК необработанных промышленных сточных вод различных типов. Найдено, что сигнал сенсора определяется соединениями, присутствующими в сточных водах.

2. Основные биосенсоры на основе растительных и животных тканей

Тканевые материалы растительного и животного происхождения успешно используют в качестве биокаталитических компонентов биосенсоров. Биокаталитические материалы этого класса просто создают естественное окружение для представляющего интерес фермента, в результате чего требуемая ферментативная активность заметно стабилизируется. Во многих случаях тканевые биосенсоры служат намного дольше, чем аналогичные биосенсоры с выделенными ферментами. Кроме того, тканевые материалы сохраняют достаточно высокую специфическую активность, необходимую для конструирования некоторых биосенсоров, тогда как выделенные ферменты в тех же условиях разрушаются. В большинстве случаев эти преимущества достигаются не в ущерб избирательности. Если же в тканевом материале протекают мешающие процессы, разрабатывают специальные меры по увеличению избирательности. В этой главе достоинства тканевых биосенсоров показаны на конкретных примерах. Рассмотрено также несколько биосенсоров на основе таких биокаталитических материалов, как фрагменты животных клеток. Наконец, впервые предложены возможные механизмы транспорта (вход, внутренний перенос и выход) субстрата и продуктов в иммобилизованных клетках ткани.

Исторически тканевые биосенсоры появились позже рассмотренных в предыдущих главах ферментных и микробных биосенсоров. Возможность использования цельного фрагмента ткани млекопитающих в качестве биокаталитического слоя впервые была продемонстрирована на примере аргининового сенсора. Тонкий слой бычьей печени и соответствующее количество фермента - уреазы совместно иммобилизовали на поверхности аммиачного газочувствительного датчика. На кончике сенсора протекали каталитические реакции.

Разработка этого первого сенсора на основе ткани печени быка открыла путь к созданию тканевых биосенсоров.

2.1 Биосенсор АМР

Тканевые материалы не только удлиняют срок службы биосенсора, но и обеспечивают большую концентрацию заданного биокатализатора. Примером может служить рассматриваемый в этом разделе биосенсор AMP с газоаммиачным датчиком. Ограниченная площадь поверхности датчика не позволяет иммобилизовать большие количества ферментного препарата. Поэтому если специфическая активность последнего невысока, то и аналитические характеристики сенсора будут неудовлетворительными. Эффект низкой концентрации фермента проявился, в частности, в случае ферментного АМР-электрода, описанного в работе. Используемый в этом сенсоре выделенный фермент обычно имеет низкую активность, что приводит к малой величине наклона градуировочных кривых и короткому сроку службы. Чувствительность и срок службы сенсора AMP можно значительно улучшить при помощи тонкого слоя мышечной ткани кролика. Повышение чувствительности биосенсора непосредственно связано с пятикратным увеличением активности биокатализатора на поверхности датчика.

Выделенный фермент иммобилизуют на поверхности датчика с помощью диацетилцеллюлозной мембраны. В тканевом биосенсоре тонкий слой мышечной ткани кролика удерживают на датчике найлоновой сеткой с отверстиями размером 37 мкм. Сенсоры обоих типов хранят при комнатной температуре в рабочем буферном растворе, содержащем 0,1 М ТрисНС1, 0,1 М КС1 и 0,02% азида натрия (рН 7,5). После сборки тканевый биосенсор следует выдерживать от 2 до 4 ч для удаления фонового аммиака.

Чтобы улучшить аналитический сигнал тканевого АМР-сенсора, оптимизировали различные параметры эксперимента (рН, концентрацию ионов калия, температуру и толщину слоя ткани). Найденные оптимальные условия-рН 7,5, 0,1 М К+ и 25°С. Увеличение толщины ткани приводит к большим временам отклика, которые становятся неприемлемыми при толщине слоя больше 0,81 мм. С другой стороны, кусочки ткани толщиной меньше 0,5 мм неудобны в обращении и плохо воспроизводимы. По этим причинам для изготовления сенсора используют слои ткани толщиной от 0,5 до 0,8 мм, которые можно легко получить с помощью острого лезвия бритвы.

Слой мышечной ткани кролика толщиной 0,5 мм содержит приблизительно пять международных единиц АМР-деаминазной активности. В то же время сравнимый объем (25 мкм) коммерческого препарата фермента имеет активность всего 0,1 ед. Такая низкая активность и приводит к плохой чувствительности ферментных биосенсоров. Фактически перед иммобилизацией выделенный фермент приходится концентрировать фильтрацией в течение 16 ч и в результате активность ферментного слоя на поверхности электрода повышается до 0,9 ед. [35]. Но даже после такого концентрирования ферментативная активность в слое ткани остается выше примерно в пять раз. Часто бывает трудно найти надежный источник приобретения некоторых видов млекопитающих для получения специфического тканевого материала. В таких случаях в качестве биокатализатора удобнее использовать порошок из высушенной ацетоном ткани. Первая попытка такого рода описана в сообщении о биосенсоре AMP, в котором пасту из растертой в порошок обезвоженной ацетоном мышцы кролика физически закрепляли на поверхности аммиачного датчика [4].

Пасту из растертой в порошок мышцы кролика получают следующим образом. В пластиковую пробирку (1 мл) вводят 300 мкл буферного раствора, содержащего 0,1 М Трис-НС1, 0,1 М КО и 0,02% азида натрия (рН 7,9), и добавляют 100 мг замороженного порошка. Смесь перемешивают на вихревой мешалке в течение 30 с. При такой обработке получается однородная паста, необходимое количество которой (обычно 10 мг) наносят на тефлоновую мембрану аммиачного датчика. Поверх пасты помещают диацетилцеллюлозную мембрану и завинчивают колпачок электрода до положения, при котором паста прочно удерживается на месте. Собранный биосенсор оставляют вымачиваться на ночь в указанном выше буферном растворе для удаления фонового аммиака из биокаталитического слоя.

Страницы: 1, 2


ИНТЕРЕСНОЕ



© 2009 Все права защищены.