бесплатно рефераты
 

Биология

p align="left">БИОСИНТЕЗ НУКЛЕИНОВЫХ КИСЛОТ

Репликация молекул ДНК.

Опыты Мезельстона и Сталя 1957 г., доказательства полуконсервативного типа репликации ДНК.

Компоненты, необходимые для репликации ДНК: ДНК-матрица в преобразованном виде, нуклеотиды в виде трифосфатов, РНК-затравка (праймер), к 3'-ОН группе, которой присоединяется следующие основания, ферменты репликации. Главный фермент репликации - ДНК-зависимая-ДНК-полимераза 3 - осуществляет образование фосфодиэфирной связи в направлении 5'->3' и элонгацию цепи.

Последовательные этапы репликации: узнавание точки начала репликации; образование репликационной вилки. Сложный процесс расплетения двойной спирали во многих точках. Ферменты расплетения хеликазы. Репликация на лидирующей и отстающей цепи ДНК. Фрагменты Оказаки. Процесс создания двойной спирали - ферменты топоизомеразы. Сшивание фрагментов и закручивание спирали.

ДНК-полимераза II - фермент репарации. ДНК-лигаза - сшивающий фермент.

Транскрипция РНК.

ДНК-матрица для синтеза всех типов РНК. Локализация синтеза всех типов РНК в клетке.

Структурные участки ДНК, на которых синтезируются мРНК-цистроны. Отличия цистронов у прокариотических и эукариотических клеток. Экзоны и интроны. фермент синтеза мРНК - ДНК-зависимая-РНК-полимераза. Строение фермента, механизм его действия. Инициация транскрипции. Промоторный комплекс. Элонгация и терминация транскрипции. Предшественники мРНК в клетках эукариотов. Процессинг мРНК, вырезание интронов и сплайсинг. Ферментативная роль мя-РНК в этом процессе. Образование зрелой мРНК, защита 3 и 5 концов молекул. Информосомы, выход в цитоплазму. Время жизни мРНК.

Гены для синтеза рРНК, тРНК и низкомолекулярных РНК. Локализация синтеза рРНК в ядрышке. Синтез предшественника рРНК. Процессинг рРНК, продукты процессинга. Предшественники тРНК. Процессинг и удаление избытка нуклеотидов с 3 и 5 концов. Формирование третичной структуры тРНК.

Обратная транскриптаза. Ретровирусы.

БИОЛОГИЧЕСКИЙ КОД

Понятие биологического кода. Предсказание кода - работы Гамова, Крика 1953 г. Экспериментальная расшифровка кода для каждой аминокислоты. Работы Ниренберга и Маттеи, 1961. Доказательства триплетности кода. Синтез искусственного гена, работы Корано. Свойства кода - древность и универсальность (3 млрд.лет) подчеркивают единство мира. Вырожденность кода как способ его совершенствования. Гипотеза "качания" Ф.Крика. Эволюция кода. Терминирующие и инициирующие кодоны.

МЕХАНИЗМ БИОСИНТЕЗА БЕЛКА

Локализация синтеза белка в клетке. Активирование аминокислот и образование ацил-тРНК. свойства ферментов ацил-тРНК-синтетаз. Образование ацил-тРНК комплекса.

Образование инициирующего комплекса. Компоненты инициирующего комплекса: 30 субъединица рибосомы, формил-метионин-тРНК, соответствующая мРНК, белковые факторы инициации, ГТФ. Формирование комплекса, его строение. Объединение с 50 субъединицей и образование транслирующего комплекса.

Механизм трансляции и элонгации (удлинение цепи). Ацильный А и пептидильный P участки рибосомы. Нахождение антикодоном тРНК места на мРНК для расположения очередной аминокислоты. Замыкание пептидной связи. Фермент транспептидирования. ГТФ источник энергии для транслокации рибосомы и мРНК. Механизм удлинения полипептидной цепи.

Терминация синтеза. Терминирующие кодоны УАГ, УАА, УГА, белковые факторы терминации.

Многократное использование мРНК в системе полисом.

Процессинг белковых молекул - их постсинтетическая модификация. Образование высших категорий структуры, включение дополнительных компонентов - гликозилирование, фосфорилирование и другие.

РЕГУЛЯЦИЯ СИНТЕЗА БЕЛКА

Регуляция экспрессии гена (на уровне транскрипции синтеза мРНК). Гипотеза оперона Жакобо и Моно. Строение lac-оперона. Опе-ратор, промотор, регуляторный ген. Синтез белковых репрессоров. Снятие репрессии. Индукторы синтеза белка.

МЕТАБОЛИЗМ АЗОТСОДЕРЖАЩИХ СОЕДИНЕНИЙ

Азотсодержащие соединения - белки, аминокислоты, нуклеотиды, мочевина, мочевая кислота.

Азотистое равновесие. Условия поддержания азотистого равнове-сия у животных.

Источник азота у растений и животных. Круговорот азота в природе. Фиксация азота у азотфиксирующих микроорганизмов нитрогеназным ферментативным комплексом. Строение комплекса. Роль Fe и Мо в восстановлении азота до аммиака. Механизм реакции.

Фиксация аммиака растениями. Три пути вовлечения аммиака в состав биоорганических соединений - синтез глутаминовой кислоты и глутамина. Характеристика ферментов, участвующих в синтезе. Синтез карбомоилфосфата.

Заменимые и незаменимые аминокислоты.

Реакция переаминирования. Пиридоксальфосфат - кофермент процесса переаминирования. Дикарбоновые амино- и оксокислоты - обязательные субстраты реакции. Образование шиффового основания и перенос аминогруппы - центральная реакция процесса. Роль оксоглутарата и глутаминовой кислоты в реакциях синтеза аминокислот.

Связь процессов переаминирования с окислительным дезаминированием глутаминовой кислоты.

Декарбоксилирование аминокислот. Пиридоксальфосфат - кофермент декарбоксилаз. Образование биологически активных аминов в реакциях декарбоксилирования. Реакции декарбоксилирования гисти-дина, тирозина, глутаминовой кислоты.

Синтез пиримидиновых нуклеотидов - карбамоилфосфат и аспарагиновая кислота - исходные продукты синтеза пиримидинов. Последовательность реакций, приводящих к синтезу уридин-5-фосфата. Глутамин - источник аминогруппы при синтезе цитозин-5-фосфата.

Синтез пуриновых оснований. Особенности процесса синтеза пуриновых нуклеотидов. Надстройка гетероциклического кольца пурина на первом углеродном атоме активированного рибозо-5-фосфата. Источники атомов азота и углерода при синтезе пурина.

Конечные продукты азотистого обмена. Необходимость выведения избытка аммиака у животных. Аммониотелизм, уреотелизм и урикотелизм. Связь форм выведения избытка аммиака со средой обитания. Синтез мочевины. Синтез карбамоилфосфата в митохондриях. Реакции цикла синтеза мочевины. Роль орнитина в этом процессе. Синтез аргинина. Синтез мочевой кислоты при окислении пуриновых оснований. Промежуточные продукты - гипоксантин и ксантин.

Витамины. Авитаминозы. История открытия витаминов. Два класса витаминов. Связь водорастворимых витаминов с ферментами. Жирорастворимые витамины. Строение и функции витаминов: А, Д, Е, К.

ЛИПИДЫ ЖИВЫХ ОРГАНИЗМОВ. СТРУКТУРА БИОМЕМБРАН.

Общие свойства объединяющие в класс липидов молекулы разного строения. Классификация липидов в соответствии с их химическим строением. Функции липидов: энергетическая, структурная и как предшественников биологически активных соединений - гормонов, витаминов.

Жирные кислоты - характерные структурные компоненты большинства липидов. Характеристика насыщенных жирных кислот. Ненасыщенные жирные кислоты, расположение двойных связей. Конформация жирных кислот. Физические и химические свойства жирных кислот. Свойства солей жирных кислот.

Триглицериды (триацилглицеролы). Строение триглицеридов.

Свойства, зависящие от состава жирных кислот: температура плавления, оптическая активность, теплопроводность.

Функции триацилглицеролов - запасание энергетических ресурсов, теплоизоляция. Локализация триглицеролов в клетках и тканях животных и растений.

Фосфолипиды - основные липидные компоненты биологических мембран. Строение фосфолипидов и характеристика, входящих в их состав компонентов. Свойства молекул фосфолипида. Конформация молекулы. Взаимодействие с водой. Образование мицелл. Структура главных представителей фосфолипидов - фосфатидилсерина, фосфатидилэтаноламина, фосфатидилхолина, кардиолипина.

Сфингомиелины. Строение. Цереброзиды - сфинголипиды, содержащие остатки углеводов. Их строение и локализация в клетках.

Ганглиозиды - наиболее сложные представители сфинголипидов. Структура ганглиозидов. Характерный структурный компонент гликолипидов - ацетилнейраминовая кислота. Локализация ганглиозидов в мембранах нервных и других клеток.

Строения и свойства биологических мембран. Функции биологических мембран. Полярные липиды и белки - основные компоненты мембран. Жидкостно-мозаичная структура мембран. Периферические и интегральные белки и их функции. Строение мембран эритроцитов.

Стероиды - неомыляемые липиды. Холестерин, холестерол и его эфиры с жирными кислотами. Структура, свойства холестерола. Его локализация в клетке. Производные холестерина - витамины группы Д, стероидные гормоны - половые гормоны и кортикостероиды, желчные кислоты.

МЕТАБОЛИЗМ ЛИПИДОВ

Энергетическая функция липидов. Первый этап в использовании жира как источника энергии - гидролиз триглицеридов под действием липаз. Превращение липазы адипоцитов в активную форму посредством фосфорилирования. Дальнейшая судьба жирных кислот и глицерина.

Механизмы активирования жирных кислот. Роль КоА и АТФ в активировании жирных кислот. Ациладенилаты образуются для активирования карбоксильных групп. Роль карнитина в этом процессе. Последовательность реакций окисления жирных кислот. Дегидрогеназы, участвующие в окислении жирных кислот. Баланс полной реакции окисления пальмитиновой кислоты. Пути использования ацетил-КоА и восстановленных коферментов NADH++ H+ и FADH++ H+.

Локализация синтеза жирных кислот в цитоплазме клетки. Ацетил-КоА - предшественник синтеза жирных кислот и холестерола. Источники ацетил-КоА в митохондриях. Механизм переноса ацетил-КоА через мембрану митохондрий в цитоплазму.

Синтез жирных кислот. Строение мультиферментного ацил-синтетазного комплекса. Характеристика ферментов и коферментов, входящих в состав комплекса. Превращение ацетил-КоА в малонил-КоА. Механизм реакции карбоксилирования. Строение биотинового фермента. Значение реакции карбоксилирования ацетил-КоА. Роль СО2 в реакции.

Инициация реакции синтеза. Роль ацилпереносящего белка (АПБ). Центральная и периферическая SН-группы. Последовательность реакций одного цикла синтеза жирной кислоты NADH+ + H+ участвует в реакциях восстановления при синтезе жирных кислот. Образование жирных кислот с двойными связями. Незаменимые жирные кислоты человека и животных.

Синтез глицеридов. Локализация синтеза триглицеридов в клетке. Активирование глицерина. Активирование жирных кислот. Последовательность реакций синтеза фосфатидной кислоты. Синтез триглицерида. Роль клеток эпителия кишечника в синтезе специфических жиров. Перенос триглицеридов к местам резервирования лимфатической и кровеносной системой, хиломикроны и липопротеины. Жировая ткань. Клетки жировой ткани - адипоциты - хранилища - триацилглицеролов и резерв энергетических ресурсов организма. В растительных клетках - жировые включения.

Синтез фосфолипидов. Синтез фосфатидилсерина. Декарбоксилирование фосфатидилсерина и образование фосфатидилэтаноламина. Синтез фосфатидиохолина. Роль аденозилметионина как донора метильных групп. Ферменты переноса метильных групп. Тетрагидрофолиевая кислота и витамин В12. Роль ЦТФ в активировании холина.

Синтез холестерина. Ацетил-КоА - источник атомов углерода для синтеза холестерина. Принципиальные отличия использования ацетил-КоА в синтезе холестерола от вовлечения его в синтез жирных кислот.

Холестерин - предшественник желчных кислот, витаминов группы Д, стероидных гормонов. Детергентная роль желчных кислот в процессе эмульгирования жиров при деградации липидов пищи в кишечнике.

Деградация фосфолипидов под действием комплекса фосфолипаз (фосфолипаза А, фосфолипаза А2, фосфолипаза С, фосфолипаза Д).

СТРУКТУРА И ФУНКЦИИ УГЛЕВОДОВ ЖИВЫХ ОРГАНИЗМОВ.

Классификация углеводов: моно-, олиго-, полисахариды. Строение моносахаридов. Циклические формы сахаров. Изомерия. Оптическая активность. Свойства моносахаров. Методы определения глюкозы в крови. Характеристика моносахаридов животных и растительных организмов.

Характеристика дисахаридов, распространенных в животных и растительных организмах. Связи между моносахаридами в дисахаридах. свойства дисахаридов. Качественные реакции на отдельные представители дисахаридов. Значение дисахаридов в питании.

Полисахариды. Структурные мономеры полисахаридов. Гомо- и гетерополисахариды. Резервные полисахариды. Гликоген, крахмал - энергетический резерв организма.

Крахмал - резервный полисахарид растений. Структура крахмала, его свойства. Амилоза и амилопектин. Строение крахмального зерна. Гликоген - резервный полисахарид животных и некоторых грибов. Структура гликогена. Связи, соединяющие моносахариды в молекуле гликогена, свойства гликогена.

Структурные полисахариды. Целлюлоза - полисахарид, входящий в оболочки клеток растений и некоторых микроорганизмов. Структура целлюлозы. Различие свойств 1,4-гликозидной связи в молекуле целлюлозы и крахмала. Значение различий для свойств и функций этих полисахаридов.

Строение клеточных стенок растительных клеток и микроорганизмов. Углеводы, входящие в состав гликопротеидов. Гликопротеиды внешней поверхности животных клеток. Углеводы, входящие в состав соединительной ткани. Глюкозаминогликаны, протеогликаны.

МЕТАБОЛИЗМ УГЛЕВОДОВ

Энергетическая функция углеводов. Катаболизм углеводов - главный путь обеспечения организмов энергией. Гликолиз центральный путь превращения глюкозы для животных растений и многих организмов. Локализация процесса. Две стадии гликолиза. Подготови-тельная стадия. Ферменты, участвующие в последовательных реакциях подготовительной стадии. Вторая стадия - реакции, приводящие к синтезу АТФ. Субстратное фосфорилирование - способ извлечения энергии для синтеза макроэргических связей в гликолизе. Молочная кислота- конечный продукт анаэробного гликолиза. Энергетика гликолиза. Регуляция гликолиза. Фосфофруктокиназа - ключевой фермент в регуляции гликолиза. Роль гексокиназы и пируваткиназы в регуляции гликолиза. Вовлечение гликогена и крахмала и других углеводов в гликолиз. Гидролитическое расщепление гликогена в крахмал и переход глюкозы в кровь. Строение и свойства фосфорилаз. Роль гормонов, цАМФ протеинкиназ в регуляции их активности. Молочнокислое брожение у микроорганизмов.

Спиртовое брожение. Анаэробное декарбоксилирование пировиноградной кислоты. Тиаминпирофосфат - кофермент декарбоксилазы. Механизм реакции. Образование конечного продукта спиртового брожения. Характеристика алкогольдегидрогеназы. Энергетика процесса брожения.

Анаэробные пути окисления субстратов. Эволюция живых организмов от анаэробиоза к аэробиозу. Ограниченность субстратов и малая эффективность извлечения энергии у анаэробов - тормоз прогрессивной эволюции жизни.

Свойства кислорода, которые определили его участие в биологическом окислении. Локализация процесса аэробного биологического окисления субстратов у про- и эукариотов.

Строение митохондрий. Форма, величина, их число и локализация в клетке. Свойства и строение внешней и внутренней мембраны митохондрий. Матрикс митохондрий, какие биохимические процессы проходят в матриксе.

Окислительное декарбоксилирование пировиноградной кислоты. Локализация процесса в матриксе митохондрий. Мультиферментный комплекс, осуществляющий декарбоксилирование. Строение и состав комплекса. Механизмы каталитического действия пируватдегидрогеназы. Конечные продукты реакции и пути их использования.

Цикл лимонной кислоты (цикл Кребса)

Экспериментальные предпосылки открытия цикла. Инициирующая реакция цикла. Последовательность биохимических реакций цикла. Стадии, на которых освобождается СО2. Стадии, на которых происходит снятие водорода и восстановление кодегидрогеназ. Особенности окислительного декарбоксилирования -кетоглутарата. Образование сукцинил-КоА. Фосфорилирование на уровне сукцинил-КоА и синтез молекулы АТФ. Дальнейший путь превращения сукцината до оксалоацетата и возобновление цикла. Роль цикла трикарбоновых кислот в интеграции обмена углеводов, жиров и аминокислот.

Понятие клеточного дыхания. Цепь переноса электронов от субс-трата на кислород. Расположение переносчиков электронов во внутренней мембране митохондрий. Характеристика и последовательность переносчиков электронов, составляющих цепь переноса. Величина окислительно-восстановительного потенциала каждой пары переносчиков электронов. Связь электронопереносящего комплекса с ферментативной системой синтеза АТФ.

Хемиосмотическая теория Питера Митчела. Градиент ионов Н+ по обе стороны внутренней мембраны, его значение в механизме синтеза АТФ. АТФ-синтетазная система. Механизм действия АТФ-синтетазного комплекса. Источник энергии для образования макроэргической связи. Протонный насос. Энергетический баланс полного окисления молекулы глюкозы. Коэффициент полезного действия аэробного окисления глюкозы. Его эффективность по сравнению с анаэробным процессом.

Регуляция тканевого дыхания транспортом АТФ и АДФ через мембрану митохондрий. Регуляция тканевого дыхания концентрацией восстановленного НАДН+ + H+. Механизм его транспорта через мембрану митохондрий. Эффект Пастера.

Cинтез углеводов. Фотосинтез. Солнечная энергия - источник химической энергии для всех биоорганических соединений. Разнообразие фотосинтезирующих организмов на Земле. Суммарное уравнение фотосинтеза. Локализация фотосинтеза. Структура и состав хлоропластов. Пигменты, участвующие в трансформации энергии: хлорофиллы, каротиноиды и т.д. Две стадии фотосинтеза. Механизм фотосин-тетического фосфорилирования. Фотолиз воды, образование восстановленного НАДФ и АТФ.

Порядок реакции, приводящий к синтезу углеводов. Роль в этом процессе рибулозадифосфата.

Глюконеогенез. Предшественники синтеза глюкозы в тканях животных. Карбоксилирование пировиноградной кислоты. Пируваткарбоксилаза - биотиновый фермент. Реакции синтеза глюкозы из пировиноградной и щавелевоуксусной кислот. Глюкогенные аминокислоты.

Синтез гликогена - гликонеогенез. Ключевая роль УТФ в синтезе гликогена. Ферменты синтеза гликогенсинтетаза и гликолил-1,6-трансфераза. Регуляция активности гликогенсинтетазы. Гормоны, участвующие в регуляции синтеза гликогена и его распада в печени и мышцах. Роль циклической АМФ и протеинкиназ в этом процессе. Катаболизм углеводов - главный путь обеспечения организмов энергией. Гидролитическое расщепление гликогена в крахмал и пе-реход глюкозы в кровь. Фосфоролиз гликогена в мышцах. Значение этого процесса. Строение и свойства фосфорилаз. Регуляция активности фосфорилаз. Роль гормонов, цАМФ, протеинкиназ в регуляции их активности.

Уровень сахара в крови и его регуляция. Пентозо-фосфатный цикл и превращения глюкозы - источник образования восстановленного НАДФH++ H+, пентоз и других сахаров. Последовательные реакции цикла. Значение коферментов и метаболитов, участвующих в процессе. Использование НАДФН2 в биосинтетических реакциях, связанных с восстановлением.

Общая регуляция углеводного обмена на уровне ферментов и гормонов.

РЕГУЛЯЦИЯ МЕТАБОЛИЗМА

Регуляция метаболизма - необходимое условие существования организма при изменяющихся функциональных состояниях и условиях внешней среды. Условия, необходимые для одновременного протекания процессов биосинтеза и распада биоорганических компонентов в клетке. Общие метаболиты и направляющие реакции анаболизма и катаболизма. Регуляторные ферменты, катализирующие реакции биосинтеза и деградации. Необратимость ключевых реакций. Уровни регуляции метаболизма.

Регуляция на уровне активности ферментов. Роль мембран в регуляции активности ферментов. Регуляция на уровне синтеза ферментов.

Нейрогуморальная регуляция метаболизма. Характеристика желез внутренней секреции. Нейросекреторная железа - гипоталамус. Эндокринные железы - гипофиз, щитовидная железа, надпочечники, поджелудочная железа, половые железы.

Гормоны. Три класса гормонов - пептидные, амины, стероидные. Общие представления о действии гормонов. Их концентрация в крови. Рецепторы гормонов на внешней и внутри мембраны клетки-мишени. Водорастворимые и жирорастворимые гормоны. Различия в механизме их действия.

Гипоталамус. Гормоны гипоталамуса - либерины (релизинг-факто-ры) и статины. Пептидная природа гормонов гипоталамуса. Гипофиз - мишень действия гормонов гипоталамуса.

Гипофиз. Строение гипофиза. Гормоны передней доли гипофиза - тропины. Характеристика тропных гормонов - кортикотропин, тиреотропин и другие. Мишень тропных гормонов гипофиза - соответствующие эндокринные железы. Задняя доля гипофиза. Вазопрессин и окситоцин. Их характеристика и механизм действия.

Надпочечники. Строение надпочечников: мозговой и корковый слой. Регуляция секреции мозгового слоя надпочечников нервной системой, коркового слоя - тропным гормоном гипофиза. Адреналин - гормон мозгового слоя надпочечников. Строение адреналина. Механизм гормонального действия адреналина. Клетки-мишени гормона. Регуляция углеводного и липидного обмена под действием адреналина. Посредники регуляторного действия адреналина.

Страницы: 1, 2, 3, 4, 5, 6, 7


ИНТЕРЕСНОЕ



© 2009 Все права защищены.