бесплатно рефераты
 

Биологические основы выращивания рыбца

p align="left">Возможность обитания некоторых рыб в воде различной солености обеспечивается развитием у них осморегуляторных приспособлений, направленных на сохранение внутреннего осмотического давления (Иванов, 1988).

Большое значение в жизни рыб имеет и солевой состав воды. Соли азотной, фосфорной и кремниевой кислот (биогены) способствуют развитию первичной продукции в водоемах - прежде всего фитоплактона, а следовательно, и животных (планктонных и бентосных), служащих пищей для рыб.

Солевой состав воды оказывает на жизнь рыб и прямое влияние. Так, например, фосфор и кальций, имеющие важное значение при формировании костной ткани и синтезе белков, рыбы могут получать не только из пищи, но и непосредственно из воды. Магний, калий, натрий, серу, железо, медь, йод, фтор, молибден и другие химические элементы, необходимые для нормального роста и развития, они могут также получать из воды. Однако рыбовод должен помнить, что повышенное содержание в воде той или иной соли может оказать на рыбу вредное воздействие, а в некоторых случаях даже вызывать ее гибель. Например, определенное количество растворимых в воде закисных соединений железа совершенно необходимо для развития растений и животных, ибо железо входит в состав хлорофилла растений, крови и тканей животных. Но если в воде содержится избыточное количество закисного железа, то оно при переходе в окисную (нерастворимую) форму отнимает у воды кислород и выпадает в виде бурого осадка, который у взрослых рыб вызывает заболевание глаз, а у молоди - поражение жабр, приводящее рыбу к гибели. Подобное явление можно наблюдать и при высокой концентрации соединений азота. Так, значительное содержание в воде нитратов или нитритов смертельно для рыб (Черномашенцев, Мильштейн, 1983).

Морская вода содержит в основном хлористые, а пресная - углекислые и сернокислые соли, поэтому пресная вода бывает жесткой или мягкой.

Внесение минеральных удобрений в водоемы создает благоприятные условия для развития кормовой базы и способствует повышению их продуктивности. Фосфорные удобрения не только способствуют улучшению кормовой базы, но и непосредственно воздействуют на выращиваемую молодь рыб, повышая обмен веществ, стимулируя рост и развитие рыб.

Большое влияние на обмен веществ рыб оказывают содержащиеся в воде соли железа, которые в концентрации до 0,1 мг/л стимулируют рост рыб, а при большем содержании вызывают снижение потребления кислорода и замедление их роста.

Растворенные в воде газы. Вода как среда обитания рыб содержит растворенные газы, особенно кислород, азот и в небольшом количестве углекислый газ.

Все рыбы дышат растворенным в воде кислородом, поэтому содержание его в воде имеет для них решающее значение. Лишь немногие рыбы частично приспособились к дыханию атмосферным кислородом. К содержанию кислорода в воде рыбы относятся неодинаково. Как правило, пелагические рыбы, речные и холодолюбивые, более требовательны к содержанию кислорода, чем донные, озерные и теплолюбивые.

По отношению к содержанию кислорода в воде всех рыб можно разделить на четыре группы.

1. Рыбы, живущие в воде с высоким содержанием кислорода (7 - 8 мл/л). К этой группе рыб относятся лососевые, которые ощущают недостаток кислорода при содержании его в воде в количестве 4 - 5 мл/л.

2. Рыбы, требующие сравнительно высоких концентраций кислорода в воде (6 - 7 мл/л), но способные жить и при содержании кислорода в воде 5 - 6 мл/л. К этой группе рыб относятся осетровые.

3. Рыбы, которые могут жить при небольшом количестве кислорода в воде (4--5 мл/л). К этой группе относятся сазан, лещ, судак и др.

4. Рыбы, которые могут жить в воде с незначительным содержанием кислорода (0,5 мл/л) - золотой карась.

Рыбец является морским видом и поэтому относится ко второй группе рыб, т.е. требующих поддержание концентрации кислорода на уровне 6 - 7 мл/л. Во время нерестовых миграций эти рыбы способны жить при меньших концентрациях кислорода (Рыжов, 1987).

При недостаточном содержании кислорода в воде обмен веществ в организме рыб снижается, и это отрицательно сказывается на их росте и развитии. Поэтому для каждого вида рыб существует нижняя граница содержания кислорода в воде - так называемый кислородный порог, за пределом которого организм не в состоянии осуществлять свои жизненные функции и погибает от удушья (Иванов, 1988). Рыбец погибает при содержании кислорода в воде ниже 0,4 - 1 мл/л. Кислородный порог не всегда постоянен: он сдвигается в зависимости от температуры воды, солевого состава и концентрации водородных ионов (Привезенцев, 2004).

Количество растворенного в воде кислорода зависит от температуры, солености, ледового покрова, развития растительности, процессов распада органического вещества и др.

При повышении температуры и солености растворимость кислорода в воде уменьшается. Так, при 0° С и солености 0 %о в воде может раствориться 10,29 см3/л, а при 30° С - только 5,57 см3/л кислорода (Иванов, 1988).

С повышением температуры воды рыбы потребляют больше кислорода. Однако существует температурный порог, по достижении которого с дальнейшим повышением температуры воды потребление кислорода падает. У рыбца потребление кислорода снижается при 26 - 28 °С, а при температуре свыше 30--35 °С они могут погибнуть. При быстром повышении содержания кислорода у рыб появляются беспокойство, одышка, кислородный наркоз, и они погибают от удушья (Берлянд, 1953).

Избыток кислорода в воде по сравнению с оптимальным режимом в период эмбрионального развития снижает функцию кроветворных органов, что вызывает анемию у рыб.

Потребление кислорода рыбами зависит от их вида, возраста, подвижности, плотности посадки, физиологического состояния, также температуры и солености воды.

На потребление кислорода рыбами оказывает влияние и соленость воды. У пресноводных рыб, например, при небольшом увеличении солености обмен веществ возрастает, а при значительном замедляется, и потребление кислорода уменьшается.

Обычно молодь рыб более требовательна к содержанию кислорода, чем старшие возрастные группы.

Интенсивность обмена веществ и потребление кислорода одиночными рыбами и в скоплениях неодинаковы. При высокой плотности населения рыб потребление кислорода ими снижается. У рыб, залегающих на зимовку в ямы, потребление кислорода по сравнению с одиночными рыбами значительно уменьшается.

Потребление кислорода изменяется в зависимости от физиологического состояния рыбы. Перед нерестом у некоторых рыб потребление кислорода повышается на 25--50% первоначального.

При плохом кислородном режиме интенсивность питания низкая и не увеличивается даже при обилии корма.

Снижение содержания кислорода может привести к летним и зимним заморам (Черномашенцев, Мильштейн, 1983).

Содержание в воде свободного диоксида углерода - важный гидрохимический показатель, характеризующий пригодность водоема для рыборазведения. Углекислый газ образуется в результате дыхания животных и растений, при разложении органических веществ. Большие концентрации в воде свободного диоксида углерода могут оказаться для рыбы не только вредными, но и губительными даже при наличии достаточного количества кислорода. Даже при небольшом содержании углекислого газа в воде кровь теряет способность усваивать кислород, и рыба погибает от удушья. Если содержание углекислого газа и не вызывает гибели, то сильно замедляет рост рыбы, так как снижается усвояемость пищи. Допустимой для большинства рыб концентрацией считается 10 - 30 мл/л (Привезенцев, 2004).

Растворенный в воде азот, находящийся в свободном состоянии, не оказывает влияния на жизнь рыб и является для них индифферентным. В теле рыб содержится значительное количество азота (1,5 - 4 %), входящего в состав всех белков, синтезируемых организмом рыб из азотистых веществ потребляемой пищи, в частности из ее аминокислот.

Из других газов в воде могут присутствовать сероводород и метан, которые образуются на дне водоемов в результате гниения органических веществ без доступа воздуха. Эти газы ядовиты и губительно действуют на организм рыб. Особенно опасен для рыб сероводород, который в отличие от метана хорошо растворим в воде и может в ней задерживаться. Метан почти не растворим в воде. Он быстро поднимается со дна водоема в верхние слои воды, а затем улетучивается в атмосферу. Однако непрерывное выделение метана из грунта водоема бывает достаточным для того, чтобы при прохождении его через воду отравить рыбу, попавшую в зону действия этого газа.

Следует отметить, что иногда в некоторых участках рек с быстрым течением, особенно под водосливом гидроэлектростанций, вода перенасыщается газами воздуха, что может вызвать у рыб газопузырьковую болезнь (Рыжов, 1987).

Активная реакция среды (рН), имеющая важное значение для жизни рыб, зависит от соотношения растворенных в воде кислорода и свободной углекислоты и закономерно изменяется в зависимости от суточного и сезонного хода фотосинтеза.

Морская вода имеет щелочную реакцию (рН колеблется около 8,0). В пресных водоёмах рН изменяется от очень кислой до сильно щелочной реакции.

Это связано с тем, что в пресных водоемах избыток углекислого газа вызывает увеличение кислотности воды, в то время как в морской, содержащей в большом количестве бикарбонаты, избыток этого газа связывается, и рН более постоянна.

Для каждого вида рыб характерны определенные значения активной реакции среды. При изменении этих величин обмен веществ нарушается, так как снижается способность организма поглощать кислород. Наиболее благоприятна для жизни рыб, являющихся объектами массового искусственного разведения, нейтральная или слабощелочная реакция воды (рН 7,0--7,5). При рН ниже 6,0 и выше 8,5--9,0 рыбы могут погибнуть (Иванов, 1988).

Глава 3. Управление половыми циклами у рыбца различными методами

В практике искусственного рыборазведения применяют три метода стимулирования созревания половых продуктов у производителей рыб: экологический, физиологический и эколого-физиологический.

Экологический метод. В 30-е годы А. Н. Державин провел многочисленные опыты по выдерживанию производителей реофильных рыб в садках с речной водой и выявил те факторы, которые способствуют развитию и созреванию половых клеток, овуляции и образованию спермы. Это прежде всего течение, кислородный режим и галечный грунт (нерестовый субстрат). Он установил также, что при этом очень важно поддерживать температуру, близкую к температуре нереста данного вида рыб.

В настоящее время экологический метод широко применяется в практике искусственного разведения лососевых и реофильных карповых рыб при выдерживании производителей с целью получения от них зрелых половых продуктов. Также экологический метод применяется при искусственном разведении осенне - нерестующих рыб, входящих в реки с гонадами во ІІ, ІІ - ІІІ, ІІІ стадиях зрелости (Привезенцев, 2004).

Именно этот метод используется при искусственном разведении рыбца. Производителей рыбца заготовляют для искусственного разведения весной в период нерестового хода в реки (март - апрель), где их ловят неводами. Отловленных производителей осматривают и отбирают более крупных особей, не имеющих травм, с учетом соотношения самок и самцов 2:1. Отобранных производителей сажают в прорезь. Прорезь транспортируют буксиром на рыбоводный завод. При этом скорость транспортировки не должна превышать 3--4 км/ч (Рыжов, 1987).

На рыбоводном заводе производителей выгружают из прорези, помещают в заполненные водой брезентовые чаны, или носилки, и доставляют к садкам, в которые пересаживают их на выдерживание до созревания половых продуктов.

Требуемое заводу количество производителей заготавливают с учетом возможного отхода 10 % особей в период выдерживания в садках и несозревания 20 % особей.

Садки для выдерживания производителей расположены в наименее шумном месте завода. Они стационарные и земляные. В верхней части каждого садка (пруда) имеется по три нерестовых канавы, а в нижней части - водоспуск (рис. 10). Ширина садка - 12 м, длина - 35 м (без канав), глубина -0,5 - 1 м. Нерестовые канавы делают длиной 25 м и шириной по дну 0,8 м. Дно и откосы их покрыты гравием и ракушкой слоем 15 - 20 см. Дно канав имеет уклон в сторону садка. Глубина в верхней части канав - 15 см, а в нижней -45 см. Канава имеет четыре переката, на которых уложена галька слоем в 3 -7 см. Через каждые 5 м канава разделена съемными решетками на отсеки. Вода поступает из отстойника в канал, из которого она подается в канавы. Это обеспечивает подачу не мутной воды и отсутствие резких температурных ее колебаний, что наряду со скоростью ее течения в канавах не менее 0,5 - 0,7 м/с положительно влияет на созревание половых продуктов производителей рыбца.

Рис. 10. Садок для выдерживания производителей рыбца

Расход воды в садке составляет 60 - 85 л/с, а плотность содержания в нем производителей может быть до 5 особей на 1 м2.

При наступлении нерестовых температур производители рыбца по мере созревания гонад выходят из садков в нерестовые канавы. Массовый заход производителей в эти канавы происходит при температуре воды 18 °С. За зашедшими в канавы производителями ведут наблюдение. При обнаружении готовности производителей к нересту секции канав перегораживают решетками, уменьшают подачу воды и отлавливают их. От зрелых особей берут икру и сперму, а затем совместно с еще недозревшими рыбами их вновь сажают в садок для получения второй порции половых продуктов (Берлянд, 1953).

Кроме указанного метода получения зрелых производителей рыбца, применяют метод выдерживания этой рыбы совместно с шемаей (Астанин, 1968).

Физиологический метод. В 30-е годы Н. Л. Гербильский осуществил многочисленные гистологические исследования гипофиза рыб и раскрыл механизм его физиологического воздействия на созревание половых продуктов.

В естественных условиях переход рыбы в нерестовое состояние осуществляется при наличии совокупности определенных факторов внешней среды. Они воспринимаются органами чувств рыбы, а через них действуют на ее центральную нервную систему - на гипоталамус. Клетки гипоталамуса выделяют гормон, активизирующий гормональную деятельность гипофиза. Выделяемый гипофизом гонадотропный гормон поступает в кровь и стимулирует созревание половых клеток, а также выход зрелых яиц (икринок) из фолликул и образование спермы. Во время нереста производители рыб выметывают зрелые половые продукты не все сразу, а постепенно. Так, самка выметывает икринки в воду по мере их овуляции. Совершаемые самкой движения приводят к разрыву следующих фолликул и продолжению вымета икринок.

Н. Л. Гербильский установил гонадотропную активность гипофиза рыб в различные периоды годового цикла. Гонадотропный гормон поступает в кровеносную систему организма рыбы непостоянно и в различном количестве. В определенные сезоны года он накапливается в гипофизе. Это позволяет использовать гипофиз как источник гонадотропного гормона, при помощи которого можно получать зрелые половые продукты от производителей на рыбоводных предприятиях. При внутримышечных инъекциях производителям суспензии гипофиза рыб гонадотропный гормон поступает в кровь и стимулирует половой процесс. Это приводит к быстрому переходу половых желез производителей из IV в V стадию зрелости и получению от них зрелой, способной к оплодотворению и развитию икры у самок и доброкачественной спермы у самцов. Следовательно, при искусственном рыборазведении можно получать зрелые половые продукты от производителей путем инъецирования им препарата гипофиза. В этом случае созревание половых клеток, овуляция и образование спермы происходят, как и при естественном нересте, под влиянием гипофиза. Однако отличие состоит в том, что увеличение количества гонадотропного гормона гипофиза в крови производителей происходит не под влиянием нерестовых условий, усиливающих выделение собственного гонадотропного гормона, а при помощи введения им взятых гипофизов от других рыб (Привезенцев, 2004).

Н. Л. Гербильский и Б. Н. Казанский установили, что для стимулирования созревания половых продуктов у разных объектов рыбоводства можно пользоваться гипофизами различных рыб. Однако в ряде случаев гонадотропный гормон обладает видовой специфичностью. Так, гонадотропный гормон судака и окуня не вызывает созревания половых продуктов у карповых. В связи с этим при проведении гипофизарных инъекций нужно использовать гипофизы тех видов, которые содержат эффективный гонадотропный гормон. Для стимуляции созревания половых продуктов у производителей можно применять гипофизы, взятые у того же вида рыб. Гонадотропный гормон сазана стимулирует созревание половых продуктов у производителей многих видов рыб, относящихся к различным семействам. Но на рыбоводных предприятиях гипофизы сазана обычно вводят производителям семейства карповых - сазану, карпу, белому амуру, белому и пестрому толстолобикам. Гипофизарные инъекции прочно вошли в практику рыбоводства и особенно широко применяются на осетровых рыбоводных заводах.

Для многих карповых, в том числе и рыбца, физиологический метод практически не применим. Это связано с тем, что количество производителей, от которых получают половые продукты, достаточно велико и провести инъецирование каждого затруднительно по техническим причинам. К тому же это требует значительных финансовых затрат (Иванов, 1988).

Эколого-физиологический метод. Советские ученые разработали и внедрили в производство эколого-физиологический метод, который предусматривает стимулирование созревания половых продуктов у производителей путем комбинированного воздействия на организм рыбы экологических факторов среды и вводимых физиологически активных веществ.

В настоящее время этот метод широко используется на наших рыбоводных предприятиях для усиления стимулирующего воздействия на производителей с целью ускорения созревания половых продуктов и повышения эффективности применения гипофизарных инъекций (Астанин, 1968).

Следовательно, на современном этапе развития искусственного рыборазведения эколого-физиологический метод сочетает гипофизарные инъекции с выдерживанием производителей в условиях, близких к естественным. Это дает возможность рыбоводу получать в определенный день и даже час необходимое количество зрелой икры и спермы, что позволяет планировать работу рыбоводного предприятия по каждому звену биотехнического процесса.

Глава 4. Биологические основы кормления рыбца

Все вещества, необходимые для нормального развития, рыба получает с пищей. Потребление пищи начинается сразу после рассасывания у личинок желточного мешка на две трети. В этот период рыбы переходят на так называемое смешанное питание. После израсходования запасов желточного мешка рыба переходит на внешнее, т.е. активное, питание ( Иванов, 1988)

В естественных условиях пищевые потребности рыб удовлетворяются за счёт животных и растительных организмов, имеющихся в водоёме.

При искусственном выращивании рыб содержат в условиях уплотнённых посадок, и пищевых ресурсов водоёма не хватает. Поэтому рыбу кормят вносимыми кормами, подразделяемые на живые и не живые или искусственные (Привезенцев, 2004).

Рыбца чаще всего выращивают совместно с другими карповыми рыбами (в частности сазаном, карпом, белым амуром), как добавочный объект и поэтому при кормлении чаще всего применяют те же корма, что и для карпа (Рыжов, 1987). Для интенсификации рыбоводного процесса целесообразно использовать естественную кормовую базу и живые корма, так как они являются наиболее полноценными, содержат все необходимые питательные вещества и охотно поедаются рыбами. В настоящее время на рыбоводных предприятиях широко используют искусственное разведение коловраток, ракообразных (дафнии, моины, артемии, гамариды и т.д.), олигохет, личинок насекомых.

Разводимые кормовые организмы обладают высокой пищевой ценностью, быстрым созреванием и ростом, высокой плодовитостью. При выращивании кормов и их использовании нужно широко применять механизацию трудоёмких процессов, что позволяет добиться значительного экономического эффекта (Карпевич, 1981).

В естественных условиях спектр питания рыбца значительно изменяется в течении его развития от личинки до взрослой рыбы. Питание начинается на втором этапе личиночного периода развития. В это время личинки питаются одноклеточными водорослями, коловратками, инфузориями, молодью кладоцер и копепод. На пятом этапе развития личинки переходят на питание взрослыми формами кладоцер и копепод,личинками фитофильных хирономид. К концу малькового периода развития рыбцы питаются, как и взрослые рыбы, зоопланктоном и зообентосом: мелкими моллюсками, личинками насекомых, червями, бокоплавами (Астанин, 1968).

Технологии кормления молоди карповых рыб созданы учёными ВНИИПРХ (д.б.н. Гамыгин Е.А., к.б.н. Боева Т.М.) и НТЦ «Астаквакорм» (д.б.н Пономарёв С.В.), технологии кормления товарной рыбы - специалистами КрасНИИРХ, ГосНИОРХ, ВНИИПРХ, УкрНИРХ.

При уплотненных посадках для кормления рыбца необходимо использовать кормовые смеси, которые должны удовлетворять ряду условий. Так, в составе смесей из нескольких компонентов количество каждого не должно превышать 60 %* от всего корма при содержании не менее 10 - 15% связующих веществ. Корм должен быть физиологически полноценным, т. е. сбалансированным по аминокислотному составу, витаминам, минеральным веществам. Поскольку большинство компонентов, особенно жмыхов, не содержит полного набора аминокислот и нуждается в обогащении, в состав смеси должно входить не менее двух видов жмыхов. При выращивании рыбца его кормят различными кормовыми смесями (комбикормами), изготовленными с учетом физиологических особенностей рыб различных возрастов, сбалансированными по всему комплексу питательных веществ и обогащенными рядом добавок (Скляров и др., 1984).

Страницы: 1, 2, 3, 4


ИНТЕРЕСНОЕ



© 2009 Все права защищены.