бесплатно рефераты
 

Биоэлектронные технологии

- для съема энергии 20000 параболоидных отражателей привод генератора мощностью 100 МВт необходим дорогой высокотемпературный обменный контур, соединяющий рассредоточенные концентраторы.

Указанные выше трудности разрешаются, если вместо этих 10-20 тысяч приемников сделать один аналогичный по своим размерам и параметрам паровому котлу обычного типа, и поднять его над поверхностью Земли.

Таким образом, возникает концепция гелиостанции башенного типа. В этом случае все параболоиды заменяются практически плоскими отражателями, производство которых значительно дешевле.

2.2 Солнечные пруды

Солнечный пруд представляет собой оригинальный нагреватель, в котором теплозащитной крышкой является вода.

Достаточно большой водоем может быть просто вырыт (могут быть использованы и природные водоемы, например, в Израиле использовано Мертвое море в качестве солнечного пруда), что относительно недорого.

Солнечный пруды содержат в себе и накопители тепла, поэтому область их использования может быть довольно широкой. Солнечные пруды могут быть использованы в гелиосистемах отопления и горячего водоснабжения жилых и общественных зданий, для получения технологической теплоты, в системах кондиционирования воздуха абсорбционного типа, для производства электроэнергии, т.е., солнечный пруд служит одновременно коллектором и аккумулятором теплоты.

В солнечный пруд заливается несколько слоев воды с различной степенью солености, причем наиболее соленый слой (0,5 м) располагается на дне. Солнечное излучение поглощается окрашенными в темный цвет дном водоема и придонный слой воды нагревается.

Придонный слой воды берется настолько более соленым, чем слой над ним, что плотность его хотя и уменьшается при нагревании, но все-таки остается выше плотности более высокого слоя. Поэтому конвекция (подъем вверх более теплой - более легкой - воды) подавляется и придонный слой нагревается все сильнее до 90° С, иногда - до кипения, при этом температура поверхностного слоя остается на уровне температуры окружающей среды. Пруд глубиной до 2-х м способен обеспечить непрерывную работу СЭС при прекращении инсоляции на срок до недели, пруды большей глубины могут обеспечить сезонный цикл аккумуляции. Правда, для этих СЭС требуются большие площади земельных угодий, в остальном - экологически приемлемые сооружения, тем более, что соленые пруды в естественных условиях существуют веками.

3. Традиционные методы получения и очистки биополимеров

Технологии получения биополимеров клетки включают следующие направления:

биопроцессинг с использованием живых клеток как продуцентов биополимеров - нуклеиновых кислот, белков, гормонов, стероидов, углеводов, полисахаридов, моно - и поликлональных антител и др.;

антисенс-технологии (антисмысловые), в основе которых лежит химический синтез биополимеров клетки на основе исходного сырья биологического происхождения.

При высокоскоростном получении биополимеров клетки (белков, гормонов, ферментов, углеводов, полисахаридов, моно - и поликлональных антител) медицинского, сельскохозяйственного и промышленного назначения используются такие продуценты как живые растительные, микробные, животные клетки и клетки человека, культивируемые in vitro в суспензиях; иммобилизованные клетки и ферменты; культивируемые in vitro инкапсулированные гибридомы.

Антисенс-технологии с использованием антисенс-олигонуклеотидов (фрагментов нуклеиновых кислот), антисенс-РНК (рибонуклеиновых кислот), рибозимов - антисенс-РНК или антисенс-олигонуклеотидов с ферментативными свойствами, ДНК-триплексов нацелены на создание ген-направленных биологически активных веществ, способных избирательно подавлять в живом организме активность вирусов, онкогенов и ростовых факторов, а также изменять структуру клеточных рецепторов при различных патологиях.

Преимуществами современных технологий биопроцессинга являются:

возможность многократного использования клеток-продуцентов биополимеров, что обеспечивает экономию сырья и трудовых затрат;

достижение максимального обособления фаз роста биомассы и биосинтеза целевого продукта;

упрощение процедуры очистки и выделения конечного продукта;

проведение синтеза биополимеров в асептических условиях;

реализация технологии получения биополимеров при нормальных температуре и давлении;

использование необходимых химических веществ в питательной среде для целенаправленного воздействия на культивируемые клетки-продуценты биополимеров;

возможность включения биопроцессинга как технологической стадии в промышленное производство биологически активных веществ с помощью тонкого органического синтеза с целью его оптимизации;

перспективы организации биопроцессинга как малотоннажного, так и крупномасштабного производства.

Антисенс-технологии характеризуются значительной экономичностью, высокими скоростью синтеза, избирательностью и чувствительностью комплиментарного взаимодействия антисенс-соединений с целевыми участками нуклеиновых кислот, а также эффективностью воздействия на живые системы.

Область применения. Данная технология находит применение в здравоохранении и ветеринарии (получение нового поколения диагностикумов, противовирусных и противоопухолевых лекарственных препаратов; генодиагностика и генотерапия), отраслях промышленности (использование биополимеров как биокатализаторов, получение пищевых добавок, повышение нефтеотдачи, оптимизация процессов добычи редких металлов из руд), сельском хозяйстве (инсектициды и биоудобрения), для защиты окружающей среды (биоремедиация почв, очистка воды).

Основания для выбора. Технология получения биополимеров клетки имеет большое значение для развития многих областей народного хозяйства, т.к. обеспечивает высокую скорость синтетических процессов, экономична. Она позволяет организовать в стране крупномасштабное производство биополимеров - биологически активных веществ.

Антисенс-технологии имеют особую ценность для диагностики и терапии наследственных, вирусных и онкозаболеваний человека, для ветеринарии и фитотерапии.

Разработка фундаментальных основ биопроцессинга и исследование возможностей использования его продуктов проводится украинскими учеными на уровне, сравнимом с зарубежным. Резкое отставание наблюдается в Украине в области масштабированного производства биополимеров, объемы ежегодного финансирования которого недостаточны.

В настоящее время необходимо создать в стране оптимальную систему передачи новейших технологий биопроцессинга, успешно разрабатываемых в отечественных лабораториях, в промышленное производство.

В области антисенс-технологий приоритет принадлежит украинским ученым, что признано мировой научной общественностью. За рубежом фундаментальные и прикладные аспекты антисенс-технологии получили широкое развитие благодаря их многообещающим перспективам в здравоохранении и ветеринарии.

Дальнейшее усовершенствование и повышение эффективности действия технологии предполагает:

создание синтетических антисмысловых олигонуклеотидов с различными реакционно-способными группами, что необходимо для повышения стабильности внутриклеточных комплексов;

освоение механизма доставки антисенс-соединений в клетку.

Развитие антисенс-технологии в стране требует увеличения финансирования работ, наличия современной аппаратурно-приборной базы, подготовки научных кадров и освоения технологии производством.

Электрофорез (от электро... и греч. phoresis - несение, перенесение), направленное движение коллоидных частиц или макроионов под действием внешнего электрического поля. Электрофорез был открыт Ф.Ф. Рейссом в 1807 и считается важнейшей разновидностью электрокинетических явлений.

Электрофорез используют в электрохимии для изучения двойного электрического слоя, адсорбции ионов на поверхности, в медицине (см. Электрофорез лекарственный). В промышленности Электрофорез используют для выделения каучука из латекса, очистки воды, отделения каолина от песка и др. В биохимии Электрофорез служит для анализа, разделения и очистки биополимеров (главным образом белков), бактериальных клеток, вирусов, а также аминокислот, витаминов и др. Практическое применение Электрофорез началось после создания шведским учёным А. Тиселиусом специального аппарата для фронтального (или свободного) Электрофорез белков в растворе (1937). Наиболее широкое распространение нашли электрофоретические методы с использованием инертных носителей (бумаги, гелей и др.), получившие общее название зонального Электрофорез, т.к фракции разделяемых веществ образуют в толще носителя отдельные, несмешивающиеся зоны. Электрофорез часто сочетают с другими методами разделения биоорганических соединений (например, с хроматографией). Разработана техника концентрирования электрофоретических зон биополимеров в гелях, значительно повышающая разрешающую способность метода (диск-Электрофорез). Применение реакции антиген-антитело в сочетании с Электрофорез послужило основой для создания метода иммуно-электрофорез. Электрофоретический анализ биологических жидкостей, например сыворотки крови для исследования главным образом белков, широко используют в диагностике многих заболеваний.

4. Биоинформационные технологии: принципы синергетики и их использование. Стахостический резонанс

За последние тридцать лет синергетика, исследующая процессы самоорганизации сложных, открытых эволюционирующих систем, обрела статус общего междисциплинарного подхода при решении самых разнообразных задач человеческой практики. Стартовав в точном естествознании, ее методы проникли в биологию, экологию, социологию, экономику, политологию. В основе синергетических моделей лежат процессы самоорганизации, отражающие определенные фазовые переходы в условиях сильной неравновесности состояний систем по вещественно-энергетическим или информационным параметрам. Ее методы чрезвычайно актуальны, так как большинство проблем, стоящих сегодня перед Человечеством, отличаются глобальностью, сложностью, нелинейностью, необходимостью выработки стратегии безопасного развития общества.

Синергетика сегодня - это удивительный сплав мощных коммуникационных процессов переноса знаний частных дисциплин до уровня системных универсалий и, затем, часто неотрефлексированной трансляции, экспансии этих знаний в иные области человеческой практики, от материаловедения, до психотерапии, образования и пиар-технологий. Стремления к коммуникации, по большей части, стихийны и мы видим роль философа-методолога не только в том, чтобы подать свой голос в нестройном хоре междисциплинарного хаоса сегодняшнего дня, но и попытаться отыскать ключевые параметры его самоорганизации. Идеи теории самоорганизации, синергетики все в большей степени резонируют сегодня в гуманитарной среде, все ярче звучат ее антропологические мотивы, поэтому так необходимы работы по ее философско-методологического сопровождению в решении проблемы "двух культур". Кроме того, широкий спектр проблем и междисциплинарный язык синергетики, восходящий к базовым структурам обыденного языка, создают единое пространство встречи и взаимопонимания профессионалов и дилетантов, гуманитариев и естественников, теоретиков и прикладников, ученых и обывателей, педагогов и учащихся, которое так же требует социокультурного осмысления.

Стохастический резонанс - что значит это словосочетание?"Стохастический" - это относящийся к области хаоса, к беспорядочному поведению, к процессу, динамика которого случайна и непредсказуема. Известным примером такого процесса является броуновское движение. Слово "резонанс" в самом общем смысле означает сильный отклик какой-либо системы на небольшое внешнее воздействие (знаменитый пример из военной истории: разрушение моста из-за того, что по нему в ногу прошла рота солдат). Важно то, что такой сильный отклик - избирателен, то есть он возникает только при определенных параметрах внешнего воздействия. Например, при вынужденном колебании маятника резонанс возникает, если частота внешнего воздействия сравнивается с собственной частотой колебаний системы.

Вместе же эти два слова означают очень интересное и, на первый взгляд, противоречащее здравому смыслу явление, которое имеет место во многих совершенно различных системах и даже, как оказывается, уже давно используется Природой. Удивительно еще и то, что хотя это явление достаточно простое (для его понимания хватит школьного курса механики), оно было открыто и осознано совсем недавно, в 80-х годах.

Суть явления стохастического резонанса заключается в том, что добавление в систему шума, т.е. хаотического движения, не уменьшает, а наоборот усиливает отклик системы на слабенькое периодическое воздействие. Другими словами, шум не подавляет сигнал, а помогает ему проявиться! И что интересно - наиболее сильный эффект возникает при некоторой вполне определенной, оптимальной интенсивности шума.

Давайте рассмотрим сначала какую-либо бистабильную систему. Слова "бистабильная система" говорят сами за себя - это система с двумя положениями устойчивого равновесия. Простой механический пример - это движение материальной точки в потенциале с двумя минимумами (см. рис.1а). Если на частицу действует еще и сила трения, то ясно, что какие бы мы ни выбрали начальные условия, колебания, в конце концов, затухнут, частица "свалится" в одну из потенциальных ям и будет находиться там неограниченно долго.

Для того, чтобы частица все-таки попала в другую потенциальную яму, надо приложить внешнюю силу. Если эта сила достаточно велика, то она "вытащит" частицу из первой ямы и перекинет ее во вторую. Легко понять, насколько велика должна быть эта сила. На языке потенциала (в данном тексте потенциал используется как синоним потенциальной энергии)"приложить внешнюю силу" означает добавить линейно растущий потенциал, как это показано на рис.1б. Если V (x) - бистабильный потенциал, то внешняя сила должна превосходить величину F0 = |V' (x) |, взятой в точке перегиба, т.е. там, где возвращающая сила, создаваемая потенциалом, самая большая. Тогда суммарный потенциал модифицируется так, как показано на рисунке, и частица скатится во вторую яму.

Если теперь внешняя сила будет периодична по времени, то в результате наша частица будет "скакать" из одной ямы в другую и обратно. Итак, что мы получили: наша бистабильная система откликается на сильное внешнее воздействие. При этом частота, с которой система перескакивает из одного устойчивого состояния в другое, совпадает с частотой внешнего воздействия.

Пока здесь нет ничего удивительного. Если внешнее воздействие очень сильное, то система будет послушно повторять все изменения и колебания этой силы.

Посмотрим, что будет, если внешнее воздействие окажется не столь сильным, т.е. F < F0. Тогда частица не сможет покинуть яму и так и останется в ней, несмотря на внешнее воздействие. В результате мы получили, что наша система обладает неким порогом чувствительности: при внешней силе F > F0 система начинает перескакивать из одного состояния в другое с частотой внешней силы, а при F < F0 система не чувствует внешнее воздействие вовсе. (В принципе можно возразить, что в этом случае частица будет колебаться под действием внешней силы внутри одной ямы. Однако чаще всего, наблюдая реальную бистабильную систему, мы можем сказать только одно - в каком из двух состояний она находится. В этом случае, при F < F0 мы будем просто видеть, что система "застыла" в одном из своих положений и все. Именно такой случай мы имеем в виду)

Итак, вывод: у бистабильной системы существует некий порог чувствительности к внешним воздействиям. Слишком слабые, т.е. подпороговые воздействия остаются для системы незамеченными.

Возникает вопрос: неужели никак нельзя заставить систему чувствовать подпороговый сигнал? Оказывается, можно! И возможность эту предоставляет именно стохастический резонанс.

Итак, рассмотрим вновь бистабильную систему в отсутствии внешних сил. Система замерла в одном из положений равновесия. Пусть теперь на частицу действует случайная сила, то есть давайте наложим на систему случайное внешнее воздействие, попросту говоря, шум. Под действием этой силы частица будет случайно колебаться. При этом может оказаться и так, что частица, блуждая по одной потенциальной яме, вдруг перескочит и во вторую. Среднее время между такими перескоками равно:

t = exp (DV / D).

Здесь DV - высота барьера, разделяющего две потенциальные ямы, а D - интенсивность шума. Видно, что чем сильнее шум, тем меньше это время, т.е. тем чаще частица перескакивает из одной ямы в другую. Если изобразить зависимость координаты частицы от времени, то получится приблизительно такая картина, как на рис. 3.

4.1 Суть и свойства стохастического резонанса

Что произойдет, если к внешнему шуму добавить и слабенький, подпороговый периодический сигнал? Заметьте, подпороговый, т.е. который сам по себе, без шума, не смог бы вызвать переход системы из одного состояния в другое!

В этом случае частица будет по-прежнему скакать из одной ямы в другую, но характер этого процесса изменится: в нем появится периодическая компонента с периодом, равным периоду внешнего слабого сигнала. То есть, перескоки осуществляются за счет случайной силы, а периодическая добавка лишь "модулирует" эффект (т.е. добавляет свою собственную периодичность). Именно так это подпороговое возмущение и проявляется: шум как бы устраняет непреодолимый ранее потенциальный барьер и заставляет систему откликаться на подпороговый сигнал. Это и есть явление стохастического резонанса.

Самая интересная особенность стохастического резонанса - это то, что существует некая оптимальная интенсивность шума, при которой отклик системы на периодический сигнал самый сильный. Как определить, насколько велик этот отклик, мы уже знаем. Для этого надо построить зависимость координаты частицы от времени и с помощью преобразования Фурье выделить периодическую составляющую сигнала. Тогда амплитуда дополнительного "горба" фурье-образа (рис. 2) будет служить количественной характеристикой чувствительности системы. Действительно, чем выше горб, тем сильнее проявляется внешний периодический сигнал в движении частицы.

Проиллюстрировать эту особенность стохастического резонанса поможет рис.4. На нем показана зависимость координаты частицы от времени при одном и том же слабом периодическом сигнале, но при разных интенсивностях шума. Значения координаты +1 и - 1 соответствуют дну первой и второй потенциальной ямы. Видно, что когда интенсивность шума мала, частица долго находится в одной потенциальной яме, прежде чем перепрыгнуть в другую (рис.4, нижний график). Внешний периодический сигнал здесь никак не проявляется. Когда мы увеличиваем интенсивность шума до оптимальной, частица под суммарным воздействием шума и периодической силы будет синхронно прыгать из одной ямы в другую (рис.4, средний график). Явно видна периодическая составляющая отклика системы, период которой совпадает с периодом внешней силы. Наконец, при дальнейшем усилении шума движение частицы станет все более и более хаотичным; периодическая компонента в отклике будет уменьшаться (рис.4, верхний график). Типичная зависимость отклика системы от интенсивности внешнего шума показана на рис.5. Ясно видно, что при некоторой интенсивности отклик максимален.

Осталось теперь понять, почему вообще существует оптимальная интенсивность шума и чему она должна равняться. Как мы видели выше, заданной интенсивности шума отвечает вполне конкретное среднее время перескока t из одной ямы в другую. Так вот, условие на оптимальную интенсивность шума таково: надо, чтобы вызываемое этим шумом время перескока равнялось половине периода слабого периодического возмущения:

t = T/2.

Как можно понять это требование? Можно условно сказать, что, подождав время t, частица "созрела" для того, чтобы прыгнуть во вторую яму. С другой стороны, мы знаем, что когда мы прикладываем внешнюю силу, мы слегка "наклоняем" потенциал так, как это показано на Рис.6. То есть, мы помогаем частице перепрыгнуть в другую яму, и потому вероятность прыжка в момент наибольшей внешней силы очень велика. Через полпериода T/2, когда частица уже "созрела" для перескока обратно в первую яму, потенциал уже наклонился в другую сторону, опять же способствуя перескоку. Поэтому именно в этот момент частица наиболее охотно совершает прыжок.

Итак, благодаря тому, что "созревание" и период внешней силы синхронизированы, возникает наиболее сильный отклик системы на внешнее периодическое возмущение. Если эти два процесса не синхронизированы, чувствительность к слабой периодической силе уменьшается. Перед нами - типичный пример избирательного воздействия, т.е. резонанса.

Вывод

Биологическим нанокомпьютерам предстоит еще очень долгий путь к тому, чтобы стать сколько-нибудь практической технологией. Однако недавняя работа группы израильских исследователей, опубликовавших статью в журнале Nature (Y. Benenson, T. Paz-Elizur, R. Adar, E. Keinan, Z. Livneh & Ehud Shapiro, "Programmable and autonomous computing machine made of biomolecules", Nature, 414, pp.430-434, 2001), показывает, что ученые уже научились создавать несложные программируемые вычислительные устройства, способные работать в условиях натурального биологического окружения типа клетки. В суммарном подсчете коллективная вычислительная мощь биологических компьютеров в израильском устройстве составляет миллиард операций в секунду при точности вычислений более 99,8%. Затраты же энергии на эти вычисления составляют менее одной миллиардной доли ватта, что делает возможным функционирование таких нанокомпьютеров внутри человеческого тела.

Представляется маловероятным, что в обозримом будущем мы отправимся в ближайший компьютерный магазин покупать ПК на основе ДНК. Однако информационно-биомолекулярные исследования вполне могут привести к технологии, чрезвычайно полезной, к примеру, в фармакологической индустрии. Например, просматриваются возможности создания "живых автоматов", способных обрабатывать ДНК внутри человеческого тела, отыскивая аномалии и вырабатывая исцеляющие препараты. Другая область применения - создание диагностических тестов внутри "умной" бактерии, перепрограммируя ее геном для включения небольших логических схем, которые способны, например, активизироваться в присутствии определенного химиката. А в качестве промежуточного этапа на данном пути видится создание удобного инструментария для ускорения нынешних необъятных работ по секвенсированию ДНК, т.е. восстановлению генома интересующих человека живых организмов.

Пока что вся область ДНК-вычислений пребывает в самом раннем этапе "подтверждения концепции", однако в течение ближайших десяти лет, считают эксперты, эта технология начнет выходить на рубеж реальных применений.

Многие эксперты полагают, что в 2010-2020 гг. будет отмечаться снижение предложения углеводородного сырья. Вследствие этого к 2025 году доля возобновляемых источников энергии в мировом энергетическом балансе возрастет с нынешних 5% до 10%, а к 2050 году до 50%, в странах ЕС к 2010 году эта доля увеличится до 12% (против 6% в 2000 году), а в общем производстве электроэнергии до 22%.

Согласно расчетам Международного экономического форума возобновляемых источников энергии IWK, суммарная выработка электроэнергии с использованием возобновляемых источников составила примерно 2,8 трлн кВт/час, а общемировая выработка электроэнергии - 14 трлн кВт/час. Среди возобновляемых источников на первом месте - ГЭС - 2,7 трлн, на втором месте геотермальная энергетика - 50 млрд, на третьем - ветроэнергетика - 23 млрд. По их оценке, в 2010 году возобновляемые источники энергии обеспечат выработку 3,5 трлн кВт/час электроэнергии. Наиболее высокие темпы роста прогнозируются в ветро- и солнечной энергетике. Объем продаж оборудования для выработки электроэнергии с использованием возобновляемых источников возрастут с 12 млрд евро в 2000 г. до 30 млрд в 2010 г.

Перечень литературы

Пивоварова З.И., Стадник В.В. Климатические характеристики солнечной радиации как источника энергии на территории СССР. - Л., Гидрометеоиздат, 1988.

Евдокимов В.М. Некоторые новые теоретические модели фотопреобразователей и перспективы повышения их КПД. /Под ред. Семёнова Н. Н., Шилова А.Е. Москва, Наука, 1995г.

Колтун М.М. Оптика и метрология солнечных элементов. М., Наука, 1985г., 280 стр.

Журнал "ГЕО". №11, ноябрь 1999г. Статья Ханне Тюгель "Гигаватты солнечного электричества".

Тихомиров О.К. Проблемы искусственного интеллекта. - М.: Высш. шк., 1987. - 211с.

Акапкин Ю.К. и др. Биотехника - новое направление в компьютеризации- М.: Наука, 1990. - 144с.

Николис Г., Пригожин И. Познание сложного. - М.: Мир, 1990. - 342с.

Синергетика и фракталы в материаловедении/ В.С. Иванова, А.С. Баланкин, И.Ж. Бунин, А.А. Оксогоев. - М.: Наука, 1994. - 383 с.

Хакен Г. Информация и самоорганизация: Макроскопический подход к сложным системам. - М.: Мир, 1991. - 240 с.

Займан Дж. Модели беспорядка. - М.: Мир, 1982. - 591 с.

Морозов А.А., Ященко В.А. Интеллектуализация ЭВМ на базе нового класса нейроподобных систем. - Киев: Тираж, 1997. -125 с.

Шаповалов В.И. Основы синергетики. М.: Испо-Сервис, 2000. -354с.

Лоскутов А.Ю., Михайлов А.С. Введение в синергетику. М.: Наука, 1990. - 226с.

Хакен Г. Синергетика. М.: Мир, 1980. -279с.

http://www.biochip.ru/.

Вопрос №1: Нанокомпьютер - это...

Вариант ответа

Оценка, ±100%

Комментарии к ответу

… аппарат - состоящий из сочетания молекул ДНК и молекул энзимов, веществ, "анализирующих" ДНК

100

Полный ответ

… аппарат - состоящий из сочетания молекул ДНК

30

Неполный ответ

… аппарат - состоящий из молекул энзимов, веществ, "анализирующих" ДНК

50

Неполный ответ

Вопрос №2: солнечное излучение, падающее на землю, обладает рядом характерных особенностей

Вариант ответа

Оценка, ±100%

Комментарии к ответу

1. низкой плотностью потока энергии;

2. суточной и сезонной цикличностью

3. зависимостью от погодных условий.

100

Полный ответ

…. низкой плотностью потока энергии;

30

Неполный ответ

…. зависимостью от погодных условий.

30

Неполный ответ

Вопрос №3: антисенс-технологии (антисмысловые) - это …

Вариант ответа

Оценка, ±100%

Комментарии к ответу

…. технологии в основе которых лежит химический синтез биополимеров клетки на основе исходного сырья биологического происхождения.

100

Полный ответ

…. биопроцессинг с использованием живых клеток как продуцентов биополимеров - нуклеиновых кислот, белков, гормонов, стероидов, углеводов, полисахаридов, моно - и поликлональных антител и др.;

0

Не верно

Вопрос №4: Электрофорез - это …

Вариант ответа

Оценка, ±100%

Комментарии к ответу

…. от электро... и греч. phoresis - несение, перенесение

30

Неполный ответ

…. направленное движение коллоидных частиц или макроионов под действием внешнего электрического поля.

100

Верно

Страницы: 1, 2


ИНТЕРЕСНОЕ



© 2009 Все права защищены.