бесплатно рефераты
 

Управление банковскими ресурсами на основе теории нечетких множеств

p align="left">Отношение R на Х называется антисимметричным, если из того, что и , следует . Матрица такого отношения обладает следующим свойством: если , то .

Отношение R на Х называется транзитивным, если из того, что и , следует . Транзитивность отношения R эквивалентна условию или .

Транзитивным замыканием отношения R на Х называется отношение, полученное из R следующим образом:

Транзитивное замыкание можно неформально определить как "наименьшее" транзитивное отношение на Х, включающее в себя отношение R. Для любого отношения R его транзитивное замыкание равно пересечению всех транзитивных отношений, содержащих R. R - транзитивное отношение тогда и только тогда, когда оно совпадает со своим транзитивным замыканием, т.е. когда . [3]

Определение нечеткого отношения.

Определение 3.10.

Нечетким отношением R на множестве Х называется нечеткое подмножество декартова произведения , характеризующееся функцией принадлежности . Значение этой функции понимается как субъективная мера или степень выполнения отношения .

Обычное отношение можно рассматривать как частный случай нечеткого, функция принадлежности которого принимает лишь значения 0 или 1.

Приведем пример, иллюстрирующий принципиальное различие обычных и нечетких отношений. Для этого лучше всего рассмотреть два "похожих" отношения на одном и том же интервале [0, 1], причем одно из этих отношений обычное (четкое), а другое нечеткое. В качестве обычного отношения возьмем отношение R ( ? ), а в качестве нечеткого отношения возьмем отношение (>>) ("много больше"). [3]

На приведенном рис. 3.7, а пары (x,y) из интервала [0, 1], связанные отношением R (т.е. x, y - такие, что ), образуют множество, показанное штриховкой. Диагональ единичного квадрата является границей этого множества: все пары (x, y), находящиеся за этой диагональю (вне штрихованной области), не связаны данным отношением.

В случае же отношения ситуация сложнее из-за того, что понятие "много больше" является нечетким. Пытаясь построить соответствующее отношению подмножество единичного квадрата, мы обнаружим, что в этом квадрате есть пары (x, y), которые мы определенно относим к подмножеству (т. е. считаем пары (x, y) связанными отношением ), и пары, которые мы считаем определенно не входящими в это подмножество (т. е. считаем не связанными отношением R). Так, например, можно считать, что определено много больше , т.е. .

С другой стороны, ясно, что для можно столь же определенно записать .

Однако подобной определенности нет в отношении, скажем, пары с парой ,

то можно сказать, что отношение (>>) в большей степени приложимо к паре , чем к паре . [3]

Таким образом, существует некоторая промежуточная область перехода от пар, для которых отношение (>>) определенно выполняется, к парам, для которых это отношение определенно не выполняется, причем парам (х, у) из этой области можно приписать степени выполнения данного отношения или субъективные оценки, зависящие от смысла, вкладываемого в понятие "много больше" в контексте той или иной ситуации.

Рис. 3.7. Пары (x,y) из интервала [0, 1], связанные отношением R

На рис. 3.7, б отсутствие четкой границы множества R показано изменением плотности штриховки. [3]

Если множество X, на котором задано нечеткое отношение R, конечно, то функция принадлежности этого отношения представляет собой квадратную матрицу. По смыслу эта матрицы аналогична матрице обычного отношения, но элементами ее могут быть не только числа 0 или 1, но и произвольные числа из интервала [0, 1]. Если элемент этой матрицы равен , то это означает, что степень выполнения отношения равна .

Носителем нечеткого отношения R на множестве Х называется подмножество декартова произведения вида

.

Носитель нечеткого отношения можно понимать как обычное отношение на множестве X, связывающее все пары (х, у), для которых степень выполнения данного нечеткого отношения не равна нулю. В случае конечного множества X матрицу носителя можно получить, заменив в матрице исходного нечеткого отношения единицами все ненулевые элементы. [3]

При анализе задач принятия решений с нечеткими отношениями удобно пользоваться множествами уровня нечеткого отношения. Поскольку нечеткое отношение определяется как нечеткое множество, то и его множества уровня определяются как

.

Нетрудно видеть, что множество уровня нечеткого отношения R на X представляет собой обычное отношение на X, связывающее все пары (х, у), для которых степень выполнения отношения R не меньше . Матрицу множества уровня можно получить, заменив в матрице нечеткого отношения R единицами все элементы, не меньшие числа , и нулями - все остальные элементы. [4]

Пример.

Пусть матрица нечеткого отношения R на множестве имеет вид

Тогда матрица обычного отношения, являющегося множеством уровня 0,5 этого нечеткого отношения, выглядит так:

.

Операции над нечеткими отношениями.

Перейдем теперь к рассмотрению операций над нечеткими отношениями. Некоторые из этих операций являются аналогами соответствующих операций для обычных отношений, однако, как и в случае нечетких множеств, существуют операции, характерные лишь для нечетких отношений. Заметим, что так же, как и в случае нечетких множеств, операции объединения и пересечения нечетких отношений (и операцию произведения) можно определить различными способами. [4]

Пусть на множестве X заданы два нечетких отношения A и B, т.е. в декартовом произведении заданы два нечетких множества A и B. Нечеткие множества

называются соответственно объединением и пересечением нечетких отношений А и В на множестве Х.

Для функции принадлежности получаем

Говорят, что нечеткое отношение В включает в себя нечеткое отношение А, если для нечетких множеств А и В выполнено . Для функций принадлежности этих множеств неравенство выполняется при любых . В рассмотренном выше примере отношений ( ? ) и ( >> ) нечеткое отношение содержится в отношении R, т.е. должно быть для любых чисел .

Если R - нечеткое отношение на множестве X, то нечеткое отношение R, характеризующееся функцией принадлежности

,

называется дополнением в Х отношения R.

Дополнение имеет смысл отрицания исходного отношения. Например, для нечеткого отношения R=(лучше) его дополнение R` (не лучше).

Обратное к R нечеткое отношение R-1 на множестве Х определяется следующим образом:

или с помощью функций принадлежности:

.

Важное значение в прикладных задачах имеет произведение или композиция нечетких отношений. В отличие от обычных отношений, произведение нечетких отношений можно определить различными способами. Здесь мы приведем некоторые из возможных определений этой операции. [3]

Определение 3.11.

Максиминное произведение нечетких отношений А и В на множестве Х характеризуется функцией принадлежности вида

.

В случае конечного множества Х матрица нечеткого отношения равна максиминному произведению матриц отношений А и В, т.е. получается с помощью тех же операций, что и матрица произведения обычных отношений.

Определение 3.11а.

Минимаксное произведение нечетких отношений А и В на Х определяется функцией принадлежности вида

Определение 3.11б.

Максимультипликативное произведение нечетких отношений А и В определяется функцией принадлежности

Для сравнения друг с другом введенных операций произведения приведем простой пример произведения отношений А и В на конечном множестве X, состоящем из двух элементов.

Пример.

Проекции нечетких отношений.

Выберем некоторое число y и рассмотрим множество всех чисел x из интервала [0,1] таких, что (рис. 3.8), т.е. множество вида .

Для фиксированного множество R(y) образовано всеми числами из интервала [0,1], не меньшими y. Объединение всех таких множеств по всем называется первой проекцией R(1) отношения R, т.е.

.

Множество R(1) обладает тем свойством, что для каждого его элемента x найдется элемент y , что (в данном примере ). [3]

Рис. 3.8. Множество всех чисел x из интервала [0,1] таких, что

Если аналогичным образом ввести множества вида

и взять их объединение по всем , то получим вторую проекцию R(2) отношения R:

.

Для любого элемента найдется такой элемент , что (в данном примере ).

В приведенном примере первая и вторая проекции отношения R ( ? ) совпадают со всем интервалом [0, 1], т.е. . Более общий случай иллюстрирует рис. 3.9.

Рис. 3.9. Общий случай проекции

Легко проверить, что декартово произведение представляет собой наименьшее прямоугольное множество, содержащее R.

Вернемся к нечетким отношениям. Пусть R - нечеткое отношение на множестве X с функцией принадлежности . Для произвольного нечеткое множество R(y) представляет собой нечеткое множество элементов x множества X, связанных с выбранным y отношением R. Функция принадлежности этого множества имеет вид , где y - фиксированный элемент множества X. Например, для нечеткого отношения R=(близко к), заданного на числовой оси, множество R(y) можно понимать как нечеткое множество чисел, близких к выбранному числу y.

Объединение нечетких множеств R(y) по всем называется первой проекцией R(1) нечеткого отношения R. [3]

Согласно определению операции объединения нечетких множеств функция принадлежности имеет вид

.

Если - декартово произведение первой и второй проекций нечеткого отношения R, то . Этот факт следует из определения функции принадлежности декартова произведения нечетких множеств:

Пример.

Пусть матрица нечеткого отношения R на множестве имеет вид

Тогда функции принадлежности первой и второй проекции этого отношения таковы:

Свойства нечетких отношений.

Рефлексивность.

Нечеткое отношение R на множестве X называется рефлексивным, если для любого выполнено равенство

.

В случае конечного множества X главная диагональ матрицы рефлексивного нечеткого отношения R состоит целиком из единиц. Примером рефлексивного нечеткого отношения может служить отношение "примерно равны" в множестве чисел.

Антирефлексивность.

Функция принадлежности антирефлексивного нечеткого отношения обладает свойством

при любом . Антирефлексивно, например, отношение "много больше" в множестве чисел. Ясно, что дополнение рефлексивного отношения антирефлексивно.

Симметричность.

Нечеткое отношение R на множестве X называется симметричным, если для любых выполнено равенство

.

Матрица симметричного нечеткого отношения, заданного в конечном множестве, симметричная. Пример симметричного нечеткого отношения - отношение "сильно различаться по величине".

Антисимметричность.

Функция принадлежности антисимметричного нечеткого отношения обладает следующим свойством:

Это свойство можно описать и следующими двумя эквивалентными способами:

Антисимметричным, например, является нечеткое отношение "много больше".Заметим, что не всякое нерефлексивное (несимметричное) отношение является антирефлексивным (антисимметричным).

Транзитивность.

Нечеткое отношение R на множестве Х называется транзитивным, если .

Из этого определения видно, что свойство транзитивности нечеткого отношения зависит от способа определения произведения нечетких отношений. Если обозначить через максиминное, минимаксное и максимультипликативное произведения отношения R само на себя, то нетрудно убедиться в том, что . Действительно, при любых выполняются неравенства

из которых и вытекают соответствующие включения. [3]

Если к слову транзитивность приписывать название соответствующей операции произведения нечетких отношений, то получаем: (минимаксная транзитивность R) => (максиминная транзитивность R) => (максимультипликативная транзитивность R). Иными словами, нечеткое отношение, обладающее свойством минимаксной транзитивности, обладает транзитивностью и двух других типов, а отношение, обладающее максимультипликативной транзитивностью, может, вообще говоря, и не быть транзитивным в двух других смыслах. [3]

Для обычного отношения, т. е. в случае, когда функция принимает лишь значения 0 и 1, максиминная и максимультипликативная транзитивности эквивалентны обычной транзитивности отношения.

Всюду ниже под транзитивностью нечеткого отношения мы будем понимать максиминную транзитивность, т. е. считать, что при любых функция принадлежности транзитивного нечеткого отношения R на множестве X удовлетворяет неравенству

.

Транзитивным, например, является рассматривавшееся ранее нечеткое отношение .

Транзитивное замыкание нечеткого отношения R определяется по аналогии с обычными отношениями:

Нетрудно проверить, что транзитивное замыкание представляет собой транзитивное нечеткое отношение и что транзитивное нечеткое отношение совпадает со своим транзитивным замыканием. [3]

4. ПРОБЛЕМА УПРАВЛЕНИЯ БАНКОВСКИМИ РЕСУРСАМИ В СВЕТЕ ТЕОРИИ НЕЧЕТКИХ МНОЖЕСТВ

4.1 Описание проблемы

Проблема формализации банковской деятельности и управления ресурсами банка как динамической системы актуальна и является одной из ведущих проблем современности. В работе рассмотрен сравнительно новый класс задач принятия решений, полученный путем объединения идей нечеткости и методик организации банковской деятельности.

В конкретных приложениях в технике, управлении, экономике или экологии подобные проблемы могут обладать самыми различными специфическими особенностями, в связи с чем построение единой "универсальной" методики, позволяющей без адаптации решать многокритериальные задачи в различных отраслях, представляется нецелесообразным как с методической, так и практической точек зрения. [5]

В то же время анализ важнейших проблем постановки и решения многокритериальных задач, а также накопленный опыт решения этих задач в различных отраслях, позволили сделать вывод о целесообразности и методической обоснованности разработки некоторой "базовой". Такая "базовая" методика должна обеспечивать разрешение ключевых проблем, присущих всем многокритериальным задачам, независимо от конкретных приложений.

Разработка "базовой" методики требует комплексного решения сформулированных проблем, в первую очередь, адекватного учета неопределенностей нестатистического характера. Последнее, в свою очередь, ставит на повестку дня необходимость дальнейшего развития математического аппарата теории нечетких множеств исходя из практических потребностей, возникающих в ходе постановки и решений многокритериальных задач управления банковскими ресурсами. [6]

В задачах формализации функционирования банка как системы управления необходимо учитывать такие исходные положения:

Основными видами управленческих действий являются:

· привлечения ресурсов, которые имеют разные свойства;

· распределение совокупного портфеля ресурсов соответственно принятых в банка стратегических и тактических решений. [5]

Ресурсами считают все допустимые объекты финансовой деятельности, использования которых имеет разноплановый характер. Главными критериями эффективности управленческой деятельности есть, как минимум, выполнения обязательных экономических нормативов и достижение высоких текущих и глобальных оценочных показателей, которые во многом определяются на качественном уровне. Чаще всего целесообразно, а иногда и необходимо, акцентировать внимание на вопросах, обусловленных стратегической политикой банка, социальными процессами, которые происходят, то есть слабо структурированными аспектами банковской деятельности. [5]

Несмотря на разную природу ресурсов, широкую диверсификацию операций, противоречивость критериев эффективности, сложность и многообразия влияния микро- и макросреды, нестационарные динамические процессы, применяемый математический аппарат, с одной стороны, должен быть довольно простым и конструктивной относительно анализа и синтеза стратегий тактического управления, а с другого - универсальным и адекватно отображать действительность. [5]

Важной особенностью управления банковскими ресурсами являются имеющиеся факторы неопределенности, случайности, неточности. Причины неопределенности - отсутствие, неполнота (недостаточность, неадекватность), недостоверность информации. Нечеткость принятия решений обусловленная субъективностью руководства банка, неточностью выводов и интерпретации данных, сложностью и (или) разнообразием выводов. Вероятностные модели в подобных случаях могут оказаться не только неэффективными, а и вредными. Наиболее адекватным математическим аппаратом для учета всего комплекса неопределенностей есть методы теории нечетких множеств. [6]

4.2 Модели управления, основанные на теории нечетких множеств

Синтез моделей управления банковскими ресурсами на основе методов теории нечетких множеств базируется на рассмотрении конечного множества X, что состоит из ряда элементов в виде:

Одна из его подмножеств G может быть приведена в виде и характеризуется функцией :

Таким образом, понятия принадлежности получает обобщения, которые предопределяет полезные результаты, которые дают возможность учитывать многозначность и неопределенность на разных стадиях планирования и управления. [5]

Нечеткое подмножество можно четко определить.

Пусть X - множество, x - элемент множества X. Тогда нечеткое подмножество множества X определяется как множество упорядоченных пар:

,

где - характеристическая функция принадлежности, которая принимает значения в полностью упорядоченном множестве M, которое указывает степень или уровень принадлежности элемента X подмножеству . Множество M - множество принадлежности. [5]

4.3 Формальное описание ресурсов банка на основе теории нечетких множеств

Описание ресурсов предусматривает деление их на две группы:

1. ресурсы, принадлежность которых в банк не вызовет сомнений;

2. ресурсы, принадлежность которых относительная.

Если предприятие, которое взяло кредит, является многолетним партнером банка, перспективы его развития известные, то принципиально нетрудно оценить вероятность возвращения кредита. Это и будет мера принадлежности данного ресурса банка. Если же кредит предоставлен предприятию, которое только начинает свою деятельность, то есть относительно его функционирования нет никакой статистики, то степень надежности возвращения кредита, а итак и степень его принадлежности банка, будет явным образом не вероятностной характеристикой.

Страницы: 1, 2, 3, 4, 5, 6, 7


ИНТЕРЕСНОЕ



© 2009 Все права защищены.