бесплатно рефераты
 

Проектирование ракетного двигателя первой ступени двухступенчатой баллистической ракеты

p align="left">Заряды из баллиститных топлив изготавливаются путем прессования. Основной метод в настоящее время - метод проходного прессования. Отливка топливных зарядов непосредственно в камеру или в специальные формы сопряжена с трудностями вследствие низких литейных свойств двухосновных порохов.

Основные характеристики баллиститных топлив:

удельный импульс …………………….2000…2500 м/с

температура продуктов сгорания …….2500…3200 К

плотность …………………………………1600…1700

адиабата продуктов сгорания …………………1,2…1,25

допустимые рабочие давления …не менее Па

полное теплосодержание ……………...Дж/кг

Важным шагом в развитии ракетной техники явилось создание смесевых топлив. Они представляют собой механические смеси из минеральных окислителей и органических горюче-связующих веществ. В качестве окислителя в современных ТРТ наибольшее применение получил перхлорат аммония . В качестве горюче-связующих веществ - полиэфирные, фенольные, эпоксидные смолы, пластмассы, синтетические каучуки. Большинство смесевых ТРТ разработано на основе полиуретанового каучука.

Смесевые топлива хорошо отливаются. Формирование заряда производится непосредственно в корпусе двигателя или в специальной изложнице методом свободного литья или литьем под давлением.

Смесевые топлива позволяют создавать весьма большие по размерам двигатели, причем, их снаряжение возможно непосредственно на стартовой позиции.

Основные характеристики смесевых топлив:

удельный импульс ………………………….2500…3200 м/с

температура продуктов сгорания ………….2800…3800 К

плотность ………………..…………………1600…1950

адиабата продуктов сгорания ……………..1,05…1,20

допустимые рабочие давления ………….…не менее Па

полное теплосодержание …………………...Дж/кг

скорость горения ……………..……………м/с

Т.к. для выбранного типа заряда - скрепленного - применяются только смесевые топлива, выбираем именно его.

Параметры выбранного топлива:

Удельный импульс ;

Потери удельного импульса ;

Плотность топлива ;

Температура горения топлива ;

Газовая постоянная ;

Модуль упругости ;

Коэффициент Пуассона ;

Показатель адиабаты ;

Предел прочности .

1.4 Выбор давления в камере сгорания и на срезе сопла

Давление в камере сгорания является наиважнейшим параметром РДТТ, определяющим устойчивость его работы и основные характеристики, связанные с эффективностью ЛА. Как показывает статистика, рациональные значения давления лежат в диапазоне 4 … 15 МПа.

Увеличение давления в камере сгорания при постоянном давлении на срезе сопла ведет к увеличению тяги и удельного импульса. Масса конструкции РДТТ также зависит от давления в камере сгорания - чем выше давление , тем больше масса конструкции двигателя.

Минимальное давление, гарантирующее устойчивое горение топлива, составляет и задается характеристиками топлива.

Согласно рекомендациям давление в камере сгорания:

- для первой ступени;

- для второй ступени;

- для третьей ступени.

Окончательно принимаем для первой ступени баллистической ракеты .

При полете ракеты с работающим двигателем высота полета сильно изменяется и, следовательно, в широких пределах изменяется атмосферное давление.

Правильный выбор давления на срезе сопла заключается в том, чтобы при этом давлении ракета получила наибольшую скорость в конце активного участка траектории и, следовательно, максимальную дальность при всех равных прочих условиях.

Согласно рекомендациям давление на срезе сопла:

- для первой ступени;

- для второй ступени;

- для третьей ступени.

Окончательно принимаем: .

2. Расчет РДТТ

2.1 Проектирование сопла

Сопло является очень важным элементом любого ракетного двигателя. Оно во многом определяет все характеристики ракеты, поскольку именно в нем потенциальная энергия горячих газов превращается в кинетическую энергию истекающей струи газов, которая и создает тягу.

Исходные данные:

Давление в камере ;

Давление на срезе сопла ;

Длина образующих конических участков сопла;

Угол раскрытия сопла;

Угол на срезе сопла;

Время работы РДТТ;

Тяга РДТТ;

Удельный импульс топлива;

Потери удельного импульса;

Газовая постоянная;

Температура горения топлива;

Показатель адиабаты продуктов сгорания.

Порядок расчета:

Безразмерная скорость газа на срезе идеального сопла

,

где коэффициент межфазового энергообмена продуктов сгорания при их движении по сопловому тракту

;

показатель изоэнтропы расширения для смесевого топлива с металлическими добавками

;

отношение температуры твердых частиц к статической температуре продуктов

сгорания. Принимаем ;

коэффициент, учитывающий потери на трение, . Принимаем

;

отношение скорости частиц твердой фазы к скорости газа, принимаем ;

отношение расхода частиц конденсированной фазы к расходу газовой среды,

принимаем ;

относительная удельная теплоемкость продуктов сгорания, принимаем .

Коэффициент истечения

,

где ускорение свободного падения.

Площадь критического сечения сопла

,

где приход газов

;

масса заряда РДТТ

;

переводной коэффициент;

коэффициент тепловых потерь. Для РДТТ с термоизоляцией .

Принимаем .

Диаметр критического сечения сопла

.

Коэффициент реактивного идеального сопла

.

Коэффициент реактивности реального сопла

,

где коэффициент, учитывающий потери энергии от диссипативных сил. Принимаем

;

коэффициент, учитывающий потери от радиального расширения газа в сопле.

Принимаем .

Безразмерная скорость потока на срезе сопла

.

Безразмерная скорость потока в критическом сечении сопла

.

Потребное уширение сопла

,

где

.

Площадь выходного сечения сопла

.

Диаметр выходного сечения сопла

.

Длина диффузора соплового тракта

.

Параметры для построения сверхзвуковой части сопла

.

.

.

.

Длина сверхзвуковой части сопла

.

Рис.4. Расчетная схема сопла РДТТ.

Рис.5. Схема сопла

2.2 Расчет оптимального давления в камере сгорания

Давление в камере сгорания

,

где

;

;

;

;

.

коэффициент использования камеры сгорания.

2.3 Расчет щелевого заряда РДТТ

Заряд щелевого типа имеет цилиндрическую форму, внутренний канал диаметром , четыре щели (пропила) шириной , высотой , расположенные в сопловой части заряда. По длине заряд делится на три части, а именно: цилиндрическую (), переходную () и щелевую ().

Исходные данные:

Число щелей ;

Вид топлива смесевое;

Плотность топлива ;

Скорость горения топлива

Скорость горения топлива зависит от состава топлива, давления в КС, начальной температуры заряда.

,

где степенной закон для определения скорости. Определяется в зависимости от

топлива. Для применяемого типа смесевого топлива степенной закон имеет

следующий вид:

в этой формуле давление берется в атм.;

температурный коэффициент. Для смесевых топлив .

Принимаем ;

при ,

при ,

начальная температура заряда. Принимаем .

.

Принимаем .

Удельный импульс тяги с учетом потерь

.

Порядок расчета:

Относительная толщина свода заряда . Принимаем .

Толщина свода заряда

.

Наружный диаметр заряда

.

Диаметр канала

.

Ширина щелей

.

Масса топлива РДТТ

.

Объем топлива

.

Средняя поверхность горения

.

Диаметр камеры сгорания

,

где плотность заряжания. Принимаем ;

. Принимаем .

Длина переходного участка РДТТ

.

Длина цилиндрического участка РДТТ

.

Общая длина заряда

,

где коэффициент, учитывающий наличие щелей.

Длина щелевой части заряда

.

Площадь поверхности внутреннего канала

.

Площадь поверхности торца заряда

.

Площадь поверхности переходной части заряда

.

Периметр щелевой части заряда

.

Размеры щелей.

Высота щели

.

Размер перемычки

.

Запас на ТЗП, ЗКС и обечайку

.

условие выполняется.

2.4 Расчет характеристик прогрессивности щелевого заряда

Процесс газообразования в камере ракетного двигателя определяется скоростью горения твердого топлива, зависящей от его состава, и поверхностью горения заряда, определяемой его геометрическими параметрами. При горении твердого топлива данного состава давление в камере двигателя определяется в основном отношением поверхности горения топлива к площади критического сечения сопла, а при неизменном критическом сечении - площадью горящей поверхности заряда. Если горящая поверхность возрастает, то горение называется прогрессивным (прогрессивная форма заряда). Характеристикой поверхности заряда называется отношение горящей поверхности заряда к начальной величине этой поверхности .

Выбор формы заряда должен обеспечивать характер изменения давления, а следовательно, и тяги во времени в соответствии с требуемыми характеристиками ЛА.

Исходные данные:

Наружный радиус заряда ;

Радиус канала ;

Полная длина заряда ;

Длина щелевой части ;

Половина ширины щели .

Порядок расчета:

Углы и в начальный момент горения

;

.

Рис. 8. Сектор щелевого заряда

Полная начальная площадь горения заряда

.

Начальный объем заряда

.

Граничное значение параметра , при котором исчезает дуговая часть периметра канала щелевой части

.

Максимальное значение параметра

.

Поскольку , то по окончании горения дуговая часть периметра канала щелевой части не исчезнет и всегда .

Текущая площадь поверхности горения

;

Текущий объем заряда

где ; ; .

Вычисляем характеристики прогрессивности заряда и для значений и , при условии, что ,

где ; ; ; .

Данные расчета сведем в таблицу 1.

,

0

0,07

0,14

0,21

0,28

0,35

0,42

1,146

6,263

10,564

14,25

17,458

20,284

22,799

2,866

13,887

21,51

27,203

31,668

35,294

38,316

,

9,799

10,285

10,639

10,852

10,925

10,857

10,649

,

3,846

3,308

2,714

2,076

1,405

0,71

0

1

1,05

1,086

1,108

1,115

1,108

1,087

0

0,14

0,294

0,46

0,635

0,815

1

2.5 Расчет звездчатого заряда

Звездчатые заряды нашли очень широкое применении в современных двигателях твердого топлива, благодаря отработанной технологии изготовления и высокому коэффициенту внутреннего заполнения, однако, звездчатые заряды имеют дегрессивные остатки топлива, которые можно устранить профилированием внутренней поверхности камеры сгорания и применением вкладышей из легких материалов. Также по сравнению с щелевыми зарядами они дают меньшее время работы, а также наличие участков с повышенной концентрацией напряжений.

Исходные данные:

Тяга двигателя ;

Ускорение свободного падения ;

Время работы двигателя ;

Диаметр заряда ;

Марка топлива ПАЛ-18/7;

Плотность топлива ;

Температура горения топлива ;

Скорость горения топлива ;

Масса топлива ;

Удельный импульс тяги с учетом потерь ;

Газовая постоянная ;

Давление в камере сгорания .

Порядок расчета:

Величина скорости горения, которую можно допустить в канале заряда, исходя из условия отсутствия эрозионного горения

,

где удельный вес топлива;

приведенная сила топлива.

Площадь канала при отсутствии эрозионного горения

,

где вес топлива;

коэффициент тепловых потерь.

Потребный коэффициент заполнения поперечного сечения КС

,

где площадь КС.

Потребное значение относительной толщины свода заряда

.

По графику зависимости подбираем число лучей и тип заряда, обеспечивающий потребный коэффициент заполнения. Выбираем звездчатый заряд со скругленными углами и .

По графикам и определяем характеристику прогрессивности горения заряда и коэффициент дегрессивно догорающих остатков .

.

Длина заряда

.

Угол раскрытия лучей

.

Радиус скругления .

Принимаем .

По таблице определяем значения углов

;

, из конструктивных соображений принимаем

Толщина свода заряда

.

Относительная длина заряда

.

Рис.9. Звездообразный заряд со скругленными углами.

2.6 Расчет на прочность корпуса РДТТ

Расчет позволяет определить толщину элементов корпуса, находящихся под давлением газов в камере сгорания. Необходимо, чтобы корпус был прочным и имел минимальную массу и стоимость.

Исходные данные:

Давление в камере сгорания ;

Внутренний диаметр камеры ;

Материал обечайки камеры 28ХСНМВФА (СП-28);

Предел прочности ;

Модуль упругости .

Порядок расчета:

Толщина металлической обечайки корпуса

,

где коэффициент запаса прочности;

временное сопротивление материала обечайки с учетом нагрева.

.

коэффициент, учитывающий снижение прочности при нагреве (принимаем, что температура обечайки не превышает ), .

Принимаем .

максимально возможное давление в КС РДТТ при максимальной температуре эксплуатации заряда

.

максимальное расчетное давление в КС РДТТ;

коэффициент, учитывающий разброс по давлению и скорости горения заряда,

.

Принимаем .

Расчет силовой оболочки сопловой крышки

Толщина сопловой крышки РДТТ

,

где запас прочности сопловой крышки;

коэффициент, определяющий высоту днища по отношению к диаметру;

предел прочности материала сопловой крышки.

Для сопловой крышки принимаем тот же материал, что и для обечайки.

Принимаем .

Расчет переднего днища

Исходные данные:

Внутренний диаметр камеры ;

Диаметр заряда ;

Материал днища 28ХСНМВФА (СП-28);

Предел прочности ;

Диаметр отверстия под фланец .

Порядок расчета:

Толщина днища

,

где коэффициент, учитывающий снижение прочности днища от отверстия под воспламенитель,

.

Наиболее нагруженными являются точки стыка цилиндрической обечайки корпуса РДТТ и днища, а также днища и воспламенителя.

Главные радиусы кривизны и для выбранных расчетных точек (рис.10)

Рис.10. Расчетная схема.

Точка 1. Угол в точке 1

,

где текущий радиус;

радиус отверстия под воспламенитель;

большая полуось эллиптического днища

;

малая полуось эллиптического днища

.

Главные радиусы кривизны в точке 1

;

.

Толщина днища в точке 1

.

Принимаем .

Точка 2.

Угол в точке 2, когда , .

Главные радиусы кривизны в точке 2

;

.

Толщина днища в точке 2

.

Принимаем .

3. Расчет теплозащитных покрытий РДТТ, выполненного по схеме «кокон»

3.1. Расчет тепловых потоков в элементах РДТТ

Исходные данные:

Диаметр камеры сгорания ;

Диаметр входа в сопло ;

Диаметр критики сопла ;

Температура продуктов сгорания в камере ;

Расход газа через сопло .

Расчет теплового потока у переднего днища

Коэффициент конвективной теплопередачи

,

где коэффициент тепловодности продуктов сгорания;

коэффициент вязкости продуктов сгорания. В первом приближении принимаем

;

коэффициент объемного расширения продуктов сгорания. Для смесевых топлив

. Принимаем ;

температура поверхности теплообмена. Принимаем ;

ускорение полета летательного аппарата. В первом приближении принимаем

.

Суммарный коэффициент теплопередачи

,

где коэффициент теплопередачи излучением.

Суммарный тепловой поток от газа к поверхности переднего днища

.

Расчет теплового потока в стенку камеры сгорания и сопловой крышки

Коэффициент конвективной теплопередачи

,

где теплоемкость продуктов сгорания. ,

. Принимаем .

Суммарный коэффициент теплопередачи

.

Суммарный тепловой поток от газа в стенку камеры сгорания и сопловой крышки

.

Расчет тепловых потоков в стенку сопла

Коэффициент теплопередачи по сечениям сопла

Сечение на входе в сопло

,

Сечение в критике сопла

,

Сечение сверхзвуковой части сопла

,

Сечение сверхзвуковой части сопла

,

Суммарный коэффициент теплопередачи

Для сечения на входе в сопло

.

Для сечения в критике сопла

.

Для сечения

.

Для сечения

.

Суммарный тепловой поток от газа в стенку сопла

Для дозвуковой части сопла

.

Для критики сопла

,

где температура газа в критическом сечении сопла. Для критики расчет проводится

с помощью таблиц газодинамических функций. В первом приближении можно принять .

Для сверхзвуковой части сопла

;

,

где температура газа в соответствующих сечениях сопла (1, 2). также определяется расчетом с помощью таблиц газодинамических функций. В первом приближении можно принять ;

.

3.2 Расчет теплозащитного покрытия двигателя

Исходные данные:

Время работы РДТТ ;

Температура продуктов сгорания ;

Начальная температура материала ;

Толщина стенки: переднего днища ;

корпуса обечайки ;

сопловой крышки ;

Коэффициент теплопередачи: переднее днище ;

обечайка корпуса и сопловая крышка ;

Материал переднего днища, сопловой крышки

и обечайки корпуса 28ХСНМВФА (СП-28);

Плотность ;

Удельная теплоемкость ;

Допустимая температура нагрева ;

Расчет толщины теплозащитного покрытия переднего днища

Для переднего днища, работающего в условиях высоких температур, но небольших скоростей движения газов (), применяем фенольно-каучуковый материал БК - 31 - эластичное резиноподобное покрытие.

Теплофизические характеристики БК - 31:

Плотность ;

Удельная теплоемкость ;

Коэффициент теплопроводности .

,

где ; коэффициенты аппроксимации;

константа аппроксимации;

относительный параметр,

;

коэффициент аппроксимации,

;

температурный симплекс (безразмерная температура),

.

Принимаем толщину ТЗП переднего днища .

Расчет толщины ТЗП обечайки корпуса и сопловой крышки

Для обечайки корпуса и сопловой крышки, работающих в условиях высоких температур и скоростей движения газов (W до 300 м/с), применим слоистый материал на основе стекловолокна АГ - 4В, имеющий следующие теплофизические свойства:

Плотность ;

Удельная теплоемкость ;

Коэффициент теплопроводности .

,

где относительный параметр,

;

коэффициент аппроксимации ТЗП,

;

температурный симплекс (безразмерная температура),

.

Принимаем толщину ТЗП оболочки корпуса и сопловой крышки .

Расчет длины теплоизолируемой части камеры сгорания

,

где длина цилиндрической части заряда (рис.7);

коэффициент заполнения цилиндрической части камеры сгорания

;

для скрепленного заряда;

;

относительная толщина свода заряда.

Расчет теплозащитного покрытия сопла

Исходные данные:

Толщина стенки: входного раструба сопла ;

выходного раструба сопла ;

Коэффициент теплопередачи:

воротника сопла ;

сопловой вкладыш в критике ;

сверхзвуковой раструб сопла ;

;

Материал входного раструба сопла 28ХСНМВФА (СП-28);

плотность ;

удельная теплоемкость ;

допустимая температура нагрева ;

Материал выходного раструба сопла 30ХГСА;

плотность ;

удельная теплоемкость ;

допустимая температура нагрева ;

Расчет толщины теплозащитного покрытия воротника

Для воротника применяем слоистый материал на основе стекловолокна АГ - 4В:

Плотность ;

Удельная теплоемкость ;

Коэффициент теплопроводности .

Расчет толщины ТЗП воротника проводим аналогично расчету толщины ТЗП камеры РДТТ. Считаем, что материал воротника работает как пассивное ТЗП.

,

где ; коэффициенты аппроксимации;

константа аппроксимации;

относительный параметр,

;

коэффициент аппроксимации ТЗП,

;

температурный симплекс (безразмерная температура),

.

Принимаем толщину ТЗП воротника (в радиальном направлении).

Расчет теплозащитного покрытия вкладыша сопла

Для вкладыша сопла применяем материал повышенной жаропрочности и жаростойкости, высокой эрозионной стойкости: пирографит, имеющий следующие теплофизические свойства:

Плотность ;

Удельная теплоемкость ;

Коэффициент теплопроводности .

,

где

;

;

,

температура газа в критическом сечении.

Принимаем толщину ТЗП воротника .

Расчет толщины теплозащитного покрытия выходного раструба сопла

Для выходного раструба сопла применяем слоистый материал на основе стекловолокна АГ - 4В:

Плотность ;

Удельная теплоемкость ;

Коэффициент теплопроводности .

Для сечения сопла

,

где

;

,

температура газа в сечении сопла .

Для сечения сопла

,

где

,

температура газа в сечении сопла .

Принимаем толщину ТЗП выходного раструба сопла ; .

Литература

1. Гречух Л.И., Гречух И.Н. Проектирование РДТТ. Учебное пособие по курсовому и дипломному проектированию. Омск, 2003.

2. Гречух Л.И., Гречух И.Н. Конструкция и проектирование РДТТ. Учебное пособие по курсовому и дипломному проектированию. Омск, 2003.

3. Алиев А.М., Липанов А.М. Проектирование ракетных двигателей твердого топлива. - М.: Машиностроение, 1995. 400с.

4. Ерохин Б.Т. Теория внутрикамерных процессов и проектирование РДТТ. - М.: Машиностроение, 1991. 560с.

5. Голубев И.С., Самарин А.В. Проектирование конструкций летательных аппаратов. - М.: Машиностроение, 1991. 512с.

6. Расчет теплозащитных покрытий РДТТ. Методические указания к курсовому и дипломному проектированию по дисциплине «Ракетные двигатели». Омск, 2004. 27с.

Страницы: 1, 2


ИНТЕРЕСНОЕ



© 2009 Все права защищены.