бесплатно рефераты
 

Открытия, положившие начало науке о Вселенной

Открытия, положившие начало науке о Вселенной

6

Министерство образования Республики Беларусь

Учреждение образования

«Брестский государственный университет имени А.С. Пушкина»

Физический факультет

Кафедра теоретической физики и астрономии

ВСЕЛЕННАЯ

Курсовая работа по теоретической физике и астрономии

Специальность: Физика и информатика

Брест 2010

СОДЕРЖАНИЕ:

Введение

1. Разбегание галактик

1.1 Симметрии Вселенной

1.2 Предположение Эйнштейна

1.3 Теория Фридмана

1.4 Динамика расширения

1.5 Закон Хаббла

1.6 Горячее начало

1.7 Реликтовое излучение

2. Всемирное антитяготение

2.1 Гипотеза Эйнштейна

2.3 Ускоренное расширение

Заключение

Список использованных источников

ВВЕДЕНИЕ

Черные дыры и космология -- две новые и, несомненно, самые удивительные области исследований, которые породила эйнштейновская общая теория относительности.

Вселенная, рассматриваемая как единое целое, -- физическая система со своими особыми свойствами, которые не сводятся к сумме свойств населяющих ее астрономических тел. Эти свойства проявляются в явлениях самых больших пространственно-временных масштабов. Главное из этих свойств - всеобщее разбегание галактик.

Вселенная -- самый крупный по масштабу объект науки. Он существует в единственном экземпляре. Из этих обстоятельств следует ряд особенностей космологии как науки. Действительно, Вселенную можно только наблюдать, экспериментировать с нею невозможно. Никаких других вселенных нам не дано, и сравнивать нашу Вселенную не с чем. Этим космология отличается, например, от физики элементарных частиц, которая изучает объекты, имеющиеся в природе в большом количестве и допускающие разнообразное экспериментирование.

Еще одной особенностью науки о Вселенной является близкое родство с философскими идеями и исканиями, с попытками осмыслить место человека в мире.

И, тем не менее, космология -- это все же настоящая естественнонаучная дисциплина, в которой главное -- конкретные факты, а любые теоретические выводы могут считаться правильными только тогда, когда они проверены и подтверждены прямыми астрономическими наблюдениями.

Основу современной космологии составляет теория, созданная Александром Александровичем Фридманом в 1922-24 гг. Эта теория полностью подтверждена всей совокупностью имеющихся сейчас наблюдательных данных о Вселенной как целом. Ее глубина, богатство физического содержания раскрываются все полнее с каждым новым наблюдательным открытием в космологии.

Главное у Фридмана -- теория космологического расширения. Фридман смог предсказать этот грандиозный космический феномен и дать ему полное математическое описание.

В последние годы явление космологического расширения часто называют Большим Взрывом. В ходу также и менее общее понимание этого термина: под ним иногда подразумевают самые первые, начальные стадии космологического расширения. А иной раз -- и сам физический механизм (до сих пор не разгаданный), благодаря которому это расширение началось.

Современная космология берет начало в первые десятилетия XX века. Это была особая эпоха в истории науки. Тогда были созданы теория относительности и квантовая механика, составляющие фундамент всей физики.

За истекшие с тех пор десятилетия космология прошла путь от первых теоретических поисков, которые почти всем казались поначалу совершенно абстрактными и произвольными, если не фантастическими, к грандиозным наблюдательным открытиям, к формированию новой богатой содержанием и хорошо обоснованной картины мира.

История космологии складывается, если говорить совсем кратко, из трех крупнейших событий. Это открытия, которые и определили лицо науки о Вселенной к началу XXI века.

Первое из трех важнейших открытий сделано Эдвином Хабблом в 1929г. он обнаружил разбегание галактик, которое теперь понимают как всеобщее расширение Вселенной. Второе событие -- регистрация реликтового излучения, равномерно заполняющего все пространство мира. Это открытие было сделано в 1965 г. Арио Пензиасом и Робертом Вилсоном (Нобелевская премия 1976 г). Наконец, третье и самое свежее событие - открытие космического вакуума двумя группами астрономов в 1998-99 гг.

Замечательно, что все три крупнейшие наблюдательные открытия были заранее предсказаны теоретиками. Расширение Вселенной было предсказано Фридманом в 1922 г. Реликтовое излучение тоже было предсказано -- по заслугам Георгия Антоновича Гамова (1940-50-е годы). Существование же космического вакуума предвидел Эйнштейн (1917 г.).

1 РАЗБЕГАНИЕ ГАЛАКТИК

1.1 Симметрии Вселенной

Давняя, уходящая к истокам классической науки традиция приписывала Вселенной в целом не только однородность, но также вечность и неизменность, как важнейшие, неотъемлемые ее свойства. Это был необычайно прочный элемент общего миропонимания, выработанного мыслителями многих поколений. Такой взгляд на мир питался идеями несотворимости Вселенной. Веками считалось, что научный подход требует признания ее тождественности себе самой во все времена.

Но откуда объективно могло быть известно, что космос статичен? Какие факты реального мира указывали на это?

На эту мысль наводило, несомненно, созерцание звездного неба, по видимости, вечного и неизменного. Это впечатление, как мы сейчас понимаем, обманчиво, оно лишь вводит в заблуждение, если распространять его на общее устройство Вселенной. Астрономам давно уже было известно, что очертания созвездий постепенно меняются со временем. Но чтобы эти изменения стали заметны и очевидны, требуются века и тысячелетия. По сути, представление о неизменности мира было гипотезой, как и представление о его пространственной однородности. Скорее, это было следствием глубокой убежденности в максимальном совершенстве и простоте устройства космоса, его идеальной симметрии.

Действительно, однородность пространства означает равноправность и одинаковость всех мест в мире, или всех его точек, если говорить математически. Это симметрия относительно перемещений, или сдвигов в пространстве от одной точки к любой другой: мир везде один и тот же, куда ни взгляни.

А неизменность мира во времени означает равноправность и одинаковость всех эпох, всех моментов в истории мира. Это симметрия относительно сдвигов по времени от одного момента к любому другому: мир всегда один и тот же, когда на него ни посмотри.

Как мы уже говорили, однородность мира -- то теперь уже надежно установленный астрономический факт. Распределение галактик, скоплений и сверхскоплений в пространстве Вселенной равномерно в среднем по большим масштабам (300 миллионов световых лет и больше).

Что же касается симметрии во времени, она не подтвердилась в наблюдениях мира галактик. Напротив, наблюдения Хаббла показали, что распределение галактик в пространстве отнюдь не статично, галактики находятся в состоянии движения, они удаляются друг от друга.

1.2 Предположение Эйнштейна

О разбегании галактик стало известно к концу 20-х годов XX века. Но первая космологическая теория Эйнштейна была создана за десять лет до этого, и ее автор твердо держался вековой космологической традиции, традиции неизменности Вселенной. Ссылаясь на доступные тогда астрономические сведения, Эйнштейн в действительности ни на минуту не сомневался в своей априорной установке. Данные же, о которых он упоминал в работе 1917 г, на деле не имели прямого отношения к космологической проблеме.

И все же теоретик остро ощущал необходимость реальных астрономических фактов, на которые он мог бы опереться. «Самое важное из всего, что нам известно из опыта о распределении материи, заключается в том, что скорости звезд очень малы по сравнению со скоростью света», -- пишет Эйнштейн, и на первых нескольких страницах своей статьи он еще пять раз упоминает об одном и том же -- о равномерности пространственного распределения «неподвижных звезд», о малости скоростей звезд по сравнению со скоростью света, о «незначительности скоростей звезд» и т.д. Но дело, как впоследствии выяснилось, вовсе не в звездах.

Работа Эйнштейна 1917 года была первой попыткой применить общую теорию относительности к космологии. Но эту теорию нужно было сначала создать. Как Ньютон изобрел механику вместе с теорией тяготения для описания динамики Солнечной системы, так Эйнштейн изобрел общую теорию относительности для описания всей Вселенной (и не только для этого). Теория Эйнштейна -- прямое продолжение, развитие и обобщение теории Ньютона. В общей теории относительности ньютоновская механика и теория тяготения содержатся в качестве частного или предельного случая -- это случай малых скоростей движения и слабых полей тяготения. В общем случае в теории Эйнштейна таких ограничений нет и именно поэтому она пригодна для описания всего мира как целого.

К немалому удивлению ее автора, общая теория относительности воспротивилась попытке вывести из нее вечность и неизменность мира. Теория не позволяла Вселенной быть статической. Все, о чем мы читаем в замечательной статье Эйнштейна, говорит о том, что он был немало удивлен и озадачен этим обстоятельством. Ситуация, однако, требовала решения. Возникала альтернатива: либо изменить взгляды и исходную установку, либо что-то радикально изменить в структуре новорожденной теории.

Эйнштейн избрал второй путь.

В только что (1915 г.) созданную общую теорию относительности ее автор внес нечто совершенно новое - космологическую константу Л. Так в уравнениях теории появилась новая постоянная величина, о которой до того ничего не было известно ни в фундаментальной физике, ни тем более в астрономии.

Стоит заметить, что в исходном своем виде уравнения содержали только одну константу -- эйнштейновскую гравитационную постоянную, к = 8рG/c4 ,которая гтредставляет собой комбинацию постоянной тяготения Ньютона G и «скорости света в вакууме» с.

Здесь сразу же нужно сказать, что понимается в физике под словом вакуум, когда говорят о «скорости света в вакууме».

В этом случае вакуум это пустота в полном изначальном смысле этого слова. Точнее, это пустота как ее трактует специальная теория относительности. Это не только отсутствие какой-либо среды или частиц, но еще и отсутствие сильных полей тяготения. В лишенном частиц и полей пространстве свет распространяется с постоянной скоростью и эта скорость есть универсальная постоянная с = 3·1010 см/сек.

Но вакуум Эйнштейна, о котором мы будем далее подробно говорить, -- совсем не пустота, у него есть энергия, у него даже есть давление. Свет распространяется в таком не пустом вакууме совсем не обязательно со скоростью с.

Возвращаясь к работе Эйнштейна, подчеркнем весьма высокий, с теоретической точки зрения, статус космологической постоянной Л -- она появляется в модифицированной теории наравне с постоянной к. Других постоянных в уравнениях общей теории относительности нет. И эти две константы выступают как универсальные фундаментальные постоянные природы.

Дополненные космологической постоянной, уравнения обшей теории относительности (или уравнения гравитационного поля, как их называет Эйнштейн) уже допускают статическое устройство Вселенной. Теперь возможность неизменного мира может быть теоретически доказана.

Мир Эйнштейна, данный в его первой космологической работе, -- это вечная Вселенная в покое и без развития. Ее трехмерное пространство неэвклидово и подобно сфере. Такое трехмерное пространство называется гиперсферой. Эйнштейн считая, что это пространство должно иметь конечный объем и быть замкнутым в себе.

Двумерный аналог такого замкнутого, но безграничного пространства -- сферическая поверхность, рассматриваемая целиком: ее площадь конечна, а сама она не имеет двумерных границ. Сфере и гиперсфере приписывается положительная кривизна.

В пространстве эйнштейновской Вселенной, как и на сфере, все точки равноправны и ни одна из них не является ни центральной, ни граничной. Такая Вселенная идеально симметрична во времени и пространстве.

Это была первая космологическая модель в новейшей науке о Вселенной. Первая, но далеко еще не окончательная.

Было найдено точное решение уравнений обшей теории относительности для космологической проблемы. Решение определенно доказывало возможность статического мира.

Открытие космологического расширения в наблюдениях Хаббла (1929 г.) принесло Эйнштейну, судя по всему, немалое разочарование. Оказалось, что дорогая ему идея статичности мира неверна. Статичность в мире звезд иллюзорна. А в мире галактик никакой статичности нет -- галактики удаляются друг от друга и притом с немалыми скоростями. Модель вечной Вселенной приходится при таких обстоятельствах оставить.

Но опровергнуть или доказать существование космологической постоянной можно было только опытным путем.

И эксперимент, астрономические наблюдения вынесли окончательное решение в пользу Эйнштейна, в пользу гипотезы космологической постоянной.

Более того, не только космологическая константа, но сама исходная идея статической Вселенной неожиданно обрела в наши дни новый вид и новую жизнь и притом благодаря тем же астрономическим наблюдениям. Но поразительней всего, пожалуй, то, что традиционная идея статичности мира находится в замечательном согласии с феноменом космологического расширения.

1.3 Теория Фридмана

О космологическом расширении первым сказал Фридман. В 1922 г., через пять лет после первой космологической работы Эйнштейна и за семь лет до открытия Хаббла, Фридман обратятся к модифицированным уравнениям общей теории относительности и доказал, что они богаче, чем об этом можно было судить по космологической модели Эйнштейна. Они допускают не только статический мир, но и мир, способный расширяться как целое или сжиматься.

Фридман предложил два типа Вселенной: 1) стационарный тип - кривизна пространства не меняется с течением времени и 2) переменный тип -- кривизна пространства меняется с течением времени. Иллюстрацией первого типа Вселенной может служить шар, радиус которого не меняется с течением времени; двумерная поверхность этого шара будет как раз двумерным пространством постоянной кривизны. Наоборот, второй тип Вселенной может быть изображен меняющимся все время шаром, то раздувающимся, то уменьшающимся, то есть уменьшающим свой радиус и как бы сжимающимся.

Переменный тип Вселенной представляет большое разнообразие случаев. Для этого типа возможны случаи, когда радиус кривизны мира... постоянно возрастает с течением времени. Возможны далее случаи, когда радиус кривизны меняется периодически: Вселенная сжимается в точку (в ничто), затем снова из точки доводит радиус свой до некоторого значения, далее опять, уменьшая радиус своей кривизны, обращается в точку и т.д.

Во второй работе Фридман делает следующий шаг в развитии своей теории -- он вводит в космологию новое трехмерное искривленное пространство, которое имеет иную, чем гиперсфера, геометрию -- геометрию Лобачевского. Кривизне такого пространства принято приписывать знак «минус». Двумерным аналогом для него является гиперболоид или седловидная поверхность.

Спустя 8 лет, в 1932 г., Эйнштейн и де Ситтер, развивая фридмановскую космологию, дополнили ее рассмотрением расширяющегося мира с плоским, эвклидовым трехмерным пространством. Этими тремя вариантами и исчерпывается полный набор теоретических возможностей для пространственно-однородного мира.

Общая теория относительности допускает как статический мир, так и мир эволюционирующий, и во втором случае имеется три варианта пространственной геометрии, включая вариант плоского пространства.

Вот что об этом можно сказать сейчас. Статическая модель Эйнштейна не проходит в ее буквальном виде -- мир галактик не статичен. Наблюдательные данные остаются на этот счет в значительной степени неопределенными.

Можно лишь ориентировочно полагать исходя из всей совокупности современных данных о плотности всех видов вещества во Вселенной, наблюдаемых движениях галактик, возрасте наиболее старых звезд и атомных ядер, что, скорее всего, пространство мира либо строго плоское как у Эйнштейна и де Ситтера, либо близкое к плоскому.

Во всех трех случаях пространственной геометрии космологическое расширение мира начинается с состояния, когда, по словам Фридмана, «пространство было точкой». Это означает, что начальная плотность вещества была неограниченно большой, бесконечной в начальный момент. Столь необычное, исключительное состояние мира называют космологической сингулярностью. Как далеко от нас в прошлом лежал этот момент сингулярности, момент начала расширения? Фридман предупреждает, что ввиду неопределенности конкретных знаний о Вселенной любые цифры могут иметь лишь ориентировочный, иллюстративный характер.

В расширяющемся мире существует простое приближенное соотношение между плотностью вещества в мире с и временем t, протекшим с начала космологического расширения:

Gсt2 ~ 1

Здесь G -- ньютоновская постоянная тяготения.

Легко проверить, что стоящее в этом уравнении выражение, Включающее три величины, является единственно возможной комбинацией, которая могла бы равняться единице. Это вытекает просто из соображений размерности: только эта их комбинация является безразмерной, то есть одинаковой при любом выборе единиц измерения.

Чтобы получить оценку возраста мира, Фридман взял это соотношение и воспользовался еще астрономическими данными о плотности вещества в нашей Галактике. При этом он считал (вполне справедливо), что средняя плотность Галактики -- это лишь верхний предел для средней плотности Вселенной, и реальная плотность вещества в мире должна быть заметно меньше той, что известна для Галактики.

Если взять в качестве с среднюю плотность звездного вещества Галактики, ~ 10-24 г/см3 , то из этого соотношения получиться t ~ 3·1015 сек. Но Фридман взял для плотности мира величину в десять тысяч раз меньшую, и тогда это соотношение дает десять миллиардов лет.

В теории Фридмана с конечным возрастом мира связано одно важное следствие. За конечное время свет проходит конечное расстояние. Но это означает, что существует принципиальный предел дальности наблюдений: нельзя увидеть того, что лежит дальше расстояния, которое свет способен пройти за десять миллиардов лет жизни Вселенной. По порядку величины, это предельное расстояние составляет десять миллиардов световых лет. Все, что дальше, что за этим горизонтом, принципиально не наблюдаемо.

Дальность действия современных телескопов имеет тот же порядок величины. Самые далекие доступные наблюдению объекты (гигантские галактики и квазары) лежат на расстояниях как раз около десяти миллиардов лет, почти что у самого горизонта мира. Так что практически весь мир, принципиально доступный наблюдениям, реально и наблюдается -- почти вплоть до его горизонта. Наблюдаемую часть мира иногда называют Метагалактикой («мета» значит «после», «за»).

1.4 Динамика расширения

Следуя разъяснениям Фридмана, представим себе шар конечных размеров, и пусть плотность вещества в нем будет однородной. Такой шар служит у Фридмана для иллюстрации динамики космологического расширения. И забудем временно об эйнштейновской космологической постоянной.

Допустим, что вещество шара -- это газ каких-то частиц, все равно каких. Но требуется, чтобы давление этого газа было пренебрежимо мало. В пренебрежении давлением единственной силой, действующей на частицы газа, будет их взаимное притяжение. Притяжение стремится сблизить частицы, и это соответствовало бы сжатию шара. Но представим себе, что шар расширяется. Это возможно, если в какой-то начальный момент времени всем частицам шара приданы скорости, направленные от центра шара наружу.

Проследим, например, за движением какой-либо частицы на поверхности шара. Из-за приданной ей начальной скорости эта частица будет удаляться от центра шара. Но сила притяжения, создаваемая всеми остальными частицами, направлена против этого движения, она стремится это движение остановить и обратить расширение в сжатие. Значит, движение рассматриваемой частицы будет замедляться, скорость ее удаления от центра будет со временем убывать. То есть, тяготение частиц шара тормозит его расширение.

Судьба расширения определяется, таким образом, противоборством тяготения и начального разгона частиц. Если тяготение велико, то оно остановит расширение шара и заставит шар сжиматься. Если же скорости так велики, что тяготению не удастся с ними справиться, расширение шара никогда не остановится и будет происходить вечно. Именно такие две динамические возможности и существуют в теории Фридмана применительно к расширению Вселенной.

Хотя мы рассуждали об этом на примере шара конечных размеров и к тому же руководствовались ньютоновскими представлениями о тяготении, соображения эти находятся в полном качественном согласии с теорией расширения, вытекающей из эйнштейновской общей теории относительности. Конечно, это не случайное совпадение. Так и должно быть, поскольку между обеими теориями существует глубокая и естественная связь: ньютоновская динамика -- это частный случай эйнштейновской обшей теории относительности.

Простая связь между плотностью и временем Gсt2 ~ 1, о которой уже говорилось выше, относится к случаю плоского трехмерного пространства. Это самый простой вариант не только по геометрии, но и по динамике.

В этом случае легко найти зависимость расстояний в мире от возраста Вселенной. Действительно, плотность -- это масса, приходящаяся на единицу объема. Объем шара радиуса R есть 4рR3/3. Так как масса шара не меняется со временем, зависимость плотности от радиуса: с ~ 1/R3. Тогда приведенное выше соотношение между плотностью и временем дает: R ~ t2/3.

Этот закон роста нужно сравнить с воображаемым случаем ннерциального разлета, когда никакой гравитации вообще нет, й скорости движения тел не меняются со временем. Инерциальный разлет -- это случай, когда при постоянных скоростях расстояния возрастают просто пропорционально времени: R~ t. Как мы видим, в реальном случае, когда тяготение существенно, расширение происходит медленнее, чем по инерции. Это и означает, что оно замедляется со временем.

Страницы: 1, 2


ИНТЕРЕСНОЕ



© 2009 Все права защищены.