бесплатно рефераты
 

Еволюція зірок

p align="left">Наступний за зовнішнім шар має характеристики металу. Цей шар «надтвердого» речовини, що знаходиться в кристалічній формі. Кристали складаються з ядер атомів з атомною масою 26 - 39 і 58 - 133. Ці кристали надзвичайно малі: щоб покрити відстань у 1 див, потрібно вибудувати в одну лінію близько 10 млрд. кристаликів. Щільність у цьому шарі більш ніж у 1 млн. раз вище, ніж у зовнішньому, або інакше, у 400 млрд. раз перевищує щільність заліза. Рухаючи далі до центра зірки, ми перетинаємо третій шар. Він містить у собі область важких ядер типу кадмію, але також багатий нейтронами й електронами. Щільність третього шару в 1 000 разів більше, ніж попереднього.

Глибше проникаючи в нейтронну зірку, ми досягаємо четвертого шару, щільність при цьому зростає незначно - приблизно в п'ять разів. Проте, при такій щільності ядра вже не можуть підтримувати свою фізичну цілісність: вони розпадаються на нейтрони, протони й електрони. Велика частина речовини перебуває у виді нейтронів. На кожен електрон і протон приходиться по 8 нейтронів. Цей шар, власне кажучи, можна розглядати як нейтронну рідину, «забруднену» електронами і протонами.

Нижче цього шару знаходиться ядро нейтронної зірки. Тут щільність приблизно в 1,5 рази більше, ніж у шарі. І, проте, навіть таке невелике збільшення щільності приводить до того, що частки в ядрі рухаються багато швидше, ніж у будь-якому іншому шарі. Кінетична енергія руху нейтронів, змішаних з невеликою кількістю протонів і електронів, настільки велика, що постійно відбуваються непружні зіткнення часток. У процесах зіткнення народжуються усі відомі в ядерній фізиці частки і резонанси, яких нараховується більш тисячі. Цілком ймовірно, є присутнім велике число ще не відомих нам часток.

Температури нейтронних зірок порівняно високі. Цього і варто очікувати, якщо врахувати, як вони виникають. За перші 10 - 100 тис. років існування зірки температура ядра зменшується до декількох сотень мільйонів градусів. Потім настає нова фаза, коли температура ядра зірки повільно зменшується унаслідок випущення електромагнітного випромінювання.

ЧОРНІ ДІРИ

Якщо маса зірки в два рази перевищує сонячну, то до кінця свого життя зірка може вибухнути як наднова, але якщо маса речовини після вибуху, усе ще перевершує дві сонячні, то зірка повинна в щільне малюсіньке тіло, тому що гравітаційні сили цілком придушують усякий внутрішній опір стискові. Учені думають, що саме в цей момент катастрофічний гравітаційний колапс приводить до виникнення чорної діри. Вони вважають, що з закінченням термоядерних реакцій зірка вже не може знаходитися в стійкому стані. Тоді для масивної зірки залишається один неминучий шлях - шлях загального і повного стиску (колапсу), що перетворює її в невидиму чорну діру.

У 1939р. Р. Оппенгеймер і його аспірант Снайдер у Каліфорнійському університеті (Беркли) займалися з'ясуванням остаточної долі великої маси холодної речовини. Одним з найбільш вражаючих наслідків загальної теорії відносності Эйнштейна виявилася наступне: коли велика маса починає колапсувати, цей процес не може бути зупинена і маса стискується в чорну діру. Якщо, наприклад, не обертова симетрична зірка починає стискуватися до критичного розміру, відомого як гравітаційний радіус, або радіус Шварцшильда (названий так на честь Карла Шварцшильда, що першим указав на його існування). Якщо зірка досягає цього радіуса, то вже не що не може перешкодити їй завершити колапс, тобто буквально замкнутися в собі. Чому ж дорівнює гравітаційний радіус? Строге математичне рівняння показує, що для тіла з масою Сонця гравітаційний радіус дорівнює майже 3 км, тоді як для системи, що включає мільярд зірок, - галактики - цей радіус виявляється рівним відстані від Сонця до орбіти планети Уран, тобто складає близько 3 млрд. км.

Які ж фізичні властивості «чорних дір» і як учені припускають знайти ці об'єкти? Багато вчених роздумували над цими питаннями; отримані деякі відповіді, що здатні допомогти в пошуках таких об'єктів.

Сама назва - чорні діри - говорить про те, що це клас об'єктів, які не можна побачити. Їхнє гравітаційне поле настільки сильне, що якби якимсь шляхом удалося виявитися поблизу чорної діри і направити убік від її поверхні промінь самого могутнього прожектора, то побачити цей прожектор було б не можна навіть з відстані, що не перевищує відстань від Землі до Сонця. Дійсно, навіть якби ми змогли сконцентрувати усе світло Сонця в цьому могутньому прожекторі, ми не побачили б його, тому що світло не змогло б перебороти вплив на нього гравітаційного поля чорної діри і залишити її поверхня. Саме тому така поверхня називається абсолютним обрієм подій. Вона являє собою границю чорної діри.

Учені відзначають, що ці незвичайні об'єкти нелегко зрозуміти, залишаючись у рамках законів тяжіння Ньютона. Поблизу поверхні чорної діри гравітація настільки сильна, що звичні ньютоновскі закони перестають тут діяти. Їх варто замінити законами загальної теорії відносності Ейнштейна. Відповідно до одному з трьох наслідків теорії Ейнштейна, залишаючи масивне тіло, світло повинний випробувати червоний зсув, тому що він повинний випробувати червоний зсув, тому що він втрачає енергію на подолання гравітаційного поля зірки. Випромінювання, що приходить від щільної зірки, подібної до білого карлика - супутникові Сиріуса А, - лише злегка зміщається в червону область спектра. Ніж щільніше зірка, тим більше цей зсув, так що від надміцною зірки зовсім не буде приходити випромінювання у видимій області спектра. Але якщо гравітаційна дія зірки збільшується в результаті її стиску, то сили тяжіння виявляються настільки великі, що світло взагалі не може залишити зірку. Таким чином, для будь-якого спостерігача можливість побачити чорну діру цілком виключена! Але тоді природно виникає питання: якщо вона невидима, то, як же ми можемо неї знайти? Щоб відповісти на це питання, учені прибігають до митецьких вивертів. Руффіні й Уілер досконально вивчили цю проблему і запропонували кілька способів нехай не побачити, але хоча б знайти чорну діру. Почнемо з того, що, коли чорна діра народжується в процесі гравітаційного колапсу, вона повинна випромінювати гравітаційні хвилі, що могли б перетинати простір зі швидкістю світла і на короткий час спотворювати геометрію простору поблизу Землі. Це перекручування проявилося б у виді гравітаційних хвиль, що діють одночасно на однакові інструменти, установлені на земній поверхні на значних відстанях друг від друга. Гравітаційне випромінювання могло б приходити від зірок, що випробують гравітаційний колапс. Якщо протягом звичайного життя зірка оберталася, то, стискуючись і стаючи, усе менше і менше, вона буде обертатися усе швидше, зберігаючи свій момент кількості руху. Нарешті вона може досягти такої стадії, коли швидкість руху на її екваторі наблизиться до швидкості світла, тобто до гранично можливої швидкості. У цьому випадку зірка виявилася б сильно деформованої і могла б викинути частина речовини. При такій деформації енергія могла б іти від зірки у виді гравітаційних хвиль з частотою порядку тисячі коливань у секунду (1000 Гц).

Дж. Вебер установив пастки гравітаційних хвиль в Аргоннской національної лабораторії поблизу Чикаго й у Мэрилендском університеті. Вони складалися з масивних алюмінієвих циліндрів, що повинні були коливатися, коли гравітаційні хвилі досягнуть Землі. Використовувані Вебером детектори гравітаційного випромінювання реагують на високі (1660 Гц), так і на дуже низькі (1 коливання в годину) частоти. Для детектировання останньої частоти використовується чуттєвий гравіметр, а детектором є сама Земля. Власна частота квадрупольних коливань Землі дорівнює одному коливанню за 54 хв.

Усі ці пристрої повинні були спрацьовувати одночасно в момент, коли гравітаційні хвилі досягнуть Землі. Дійсно вони спрацьовували одночасно. Але, на жаль, пастки включалися занадто часто - приблизно раз на місяць, що виглядало досить дивно. Деякі учені вважають, що хоча досвіди Вебера й отримані їм результати цікаві, але вони недостатньо надійні. З цієї причини багато хто відносяться досить скептично до ідеї детектировання гравітаційних хвиль (експерименти по детектированню гравітаційних хвиль, аналогічні досвідам Вебера, пізніше були перевірені в ряді інших лабораторій і не підтвердили результатів Вебера. В даний час вважається, що досвіди Вебера помилкові).

Роджер Пенроуз, професор математики Биркбекського коледжу Лондонського університету, розглянув цікавий випадок колапсу й утворення чорної діри. Він також допускає, що чорна діра зникає, а потім виявляється іншим часом у якомусь іншому всесвіті. Крім того, він затверджує, що народження чорної діри під час гравітаційного колапсу є важливою вказівкою на те, що з геометрією простору-часу відбувається щось незвичайне. Дослідження Пенроуза показують, що колапс закінчується утворенням сингулярності, тобто він повинний продовжуватися до нульових розмірів і нескінченної щільності об'єкта. Останні умова дає можливість іншого всесвіту наблизитися до нашої сингулярності, і не виключено, що сингулярність перейде в цей новий всесвіт. Вона навіть може з'явитися в якому-небудь іншому місці нашого власного Всесвіту.

Деякі вчені розглядають утворення чорної діри як маленьку модель того, що, відповідно до пророкувань загальної теорії відносності, у кінцевому рахунку, може трапитися з Всесвіт. Загальновизнано, що ми живемо в незмінно розширюється Вселеної, і один з найбільш важливих і пекучих питань науки стосується природи Вселеної, її минулого і майбутнього. Без сумніву, усі сучасні результати спостережень указують на розширення Всесвіту. однак на сьогодні одне із самих каверзних питань такий: чи сповільнюється швидкість цього розширення, і якщо так, те чи не стиснеться Всесвіт через десятки мільярдів років, утворити сингулярності. Очевидно, коли-небудь ми зможемо з'ясувати, по якому шляху випливає Всесвіт, але, бути може, багато раніш, вивчаючи інформацію, що просочується при народженні чорних дір, і ті фізичні закони, що керують їх долею, ми зможемо пророчити остаточну долю Всесвіту.

Майже усе своє життя зірка зберігає температуру і розмір практично постійними. Значення головної послідовності полягає в тім, що більшість звичайних зірок виявляються нормальними, тобто позбавленими яких-небудь особливостей. Ми вправі очікувати, що ці зірки підкоряються визначеним залежностям, подібним, наприклад, згаданої головної послідовності. Більшість зірок виявляються на цій похилій лінії - головної послідовності, тому, що зірка може прийти на цю лінію усього лише за кілька сотень тисяч років, а, залишивши неї, прожити ще кілька сотень мільйонів років, більшість зірок свідомо залишається на головній послідовності протягом мільярдів років. Народження і смерть - мізерно малі миті в житті зірки. Наше Сонце, що є звичайною зіркою, знаходиться на цій послідовності вже протягом 5-6 млрд. років і, очевидно, проведе на ній ще стільки ж часу, тому що зірки з такою масою і таким хімічним складом, як у Сонця, живуть 10-12 млрд. років. Зірки багато меншої маси знаходяться на головній послідовності приблизно 50 млрд. років. Якщо ж маса зірки в 30 разів перевершує сонячну, то час її перебування на головній послідовності складе усього близько 1 млн. років.

Повернемося до розгляду процесів, що відбуваються при народженні зірки: вона продовжує стискуватися, стиск супроводжується зростанням температури. Температура повзе нагору, і от величезна газова куля починає світитися, його вже можна спостерігати на тлі темного нічного неба як тьмяний червонуватий диск. Значна частка енергії його випромінювання як і раніше приходиться на інфрачервону область спектра. Але це ще не зірка. У міру того як речовина протозірки ущільнюється, воно усе швидше падає до центра, розігріваючи ядро зірки до більш високих температур. Нарешті температура досягає 10 млн. ДО, і тоді починають протікати термоядерні реакції - джерело енергії всіх зірок у Всесвіті. Як тільки термоядерні процеси включаються в дію, космічне тіло перетворюється в повноцінну зірку.

Стискуючись, пил і газ утворять протозірку; її речовина являє собою типовий зразок речовини навколишньої нас частини космічного простору. Говорячи про зразок речовини Всесвіт, ми маємо на увазі, що цей шматочок міжзоряного середовища на 89% складається з водню, на 10%-з гелію; такі елементи, як кисень, азот, вуглець, неон і т.п. складають у ньому менш 1%, а всі метали, разом узяті, - не більш 0,25%. Таким чином, зірка в основному складається з тих елементів, що найчастіше зустрічаються у Всесвіті. І оскільки більш усього у Всесвіті представлений водень, то, звичайно, будь-які термоядерні реакції повинні протікати з його участю.

Подекуди зустрічаються куточки космічного простору з підвищеним змістом важких елементів, але це лише місцеві аномалії - залишки давніх зоряних вибухів, що розкидали і розсіяли в околиці важкі елементи. Ми не будемо зупинятися на таких аномальних областях з підвищеною концентрацією важких елементів, а зосередимо увагу на зірках, що складаються в основному з водню.

Коли температура в центрі протозірки досягає 10 млн. ДО, починаються складні (але детально вивчені) термоядерні реакції, у ході яких з ядер водню (протонів) утворяться ядра гелію; кожні чотири протони, поєднуючи, створюють атом гелію. Спочатку, коли з'єднуються один з одним два протони, виникає атом важкого водню, або дейтерію. Потім останній зіштовхується з третім протоном, і в результаті реакції народжується легкий ізотоп гелію, що містить два протони й один нейтрон.

У сум'ятті, що панує в ядрі зірки, що швидко рухаються атоми легкого гелію іноді зіштовхуються один з одним, у результаті чого з'являється атом звичайного гелію, що складає з двох протонів і двох нейтронів. Два зайвих протони повертаються назад у гарячу суміш, щоб коли-небудь знову вступити в реакцію, що породжує гелій. У цьому процесі близько 0,7% маси перетворюється в енергію. Описаний ланцюжок реакцій - один з важливих термоядерних циклів, що протікають у ядрах зірок при температурі близько 10 млн. К. Деякі астрономи вважають, що при більш низьких температурах можуть протікати інші реакції, у яких беруть участь літій, берилій і бор. Але вони відразу роблять застереження, що якщо такі реакції і мають місце, те їхній відносний внесок у генерацію енергії незначний.

Коли температура в надрах зірки знову збільшується, у дію вступає ще одна важлива реакція, у якій як каталізатор бере участь вуглець. Почавши з водню і вуглецю-12, така реакція приводить до утворення азоту-13, що спонтанно розпадається на вуглець-13 - ізотоп вуглецю, більш важкий, чим той, з якого реакція починалася. Вуглець-13 захоплює ще один протон, перетворюючи в азот-14. Останній подібним же шляхом стає киснем-15. Цей елемент також хитливий і в результаті спонтанного розпаду перетворюється в азот-15. І, нарешті, азот-15, приєднавши до себе четвертий протон, розпадається на вуглець-12 і гелій.

Таким чином, побічним продуктом цих термоядерних реакцій є вуглець-12, що може знову покласти початок реакціям даного типу. Об'єднання чотирьох протонів приводить до утворення одного атома гелію, а різниця в масі чотирьох протонів і одного атома гелію, що складає близько 0,7% від первісної маси, виявляється у виді енергії випромінювання зірки. На Сонце щосекунди 564 млн. т водню перетворюється в 560 млн. т гелію, а різниця - 4 млн. т речовини - перетворюється в енергію і випромінюється в простір. Важливо, що механізм генерації енергії в зірці залежить від температури.

Саме температура ядра зірки визначає швидкість процесів. Отже, при такій температурі переважає протон - протонний цикл. При збільшенні температури до 16 млн. ДО, імовірно, обидва цикли дають рівний внесок у процес генерації енергії. Коли ж температура ядра піднімається вище 20 млн. ДО, що переважає стає вуглецевий цикл.

Як тільки енергія зірки починає забезпечуватися за рахунок ядерних реакцій, гравітаційний стиск, з якого почався весь процес, припиняється. Тепер самопідтримується реакція може продовжуватися протягом часу, тривалість якого залежить від початкової маси зірки і складає приблизно від 1 млн. років до 100 млрд. років і більше. Саме в цей період зірка досягає головної послідовності і починає своє довге життя, що протікає майже без змін. Целю вічність проводить зірка в цій стадії. Нічого особливого з нею не відбувається, вона не залучає до себе пильної уваги. Тепер це всього-на-всього повноцінний член зоряної колонії, загублений серед безлічі побратимів.

Однак процеси, що протікають у ядрі зірки, несуть у собі зародки її прийдешнього руйнування. Коли дерево або вугілля згоряють у каміні, виділяється тепло, а як продукти відходу утворяться дим і зола. У "каміні" зоряного ядра водень - це вугілля, а гелій - зола. Якщо з каміна час від часу не видаляти золу, то вона може забити його і вогонь потухне.

Якщо в ядрі зірки речовина не перемішується, у термоядерних реакціях починають брати участь шари, що безпосередньо примикають до гелієвого ядра, що забезпечує зірку енергією. Однак згодом запаси водню в цих шарах висихають, і ядро розростається усе більше і більше. Нарешті досягається стан, коли в ядрі зовсім не залишається водню. Звичайні реакції перетворення водню в гелій припиняються; зірка залишає головну послідовність і вступає в порівняно короткий (але цікавий) відрізок свого життєвого шляху, відзначений надзвичайно бурхливими реакціями.

Коли водню стає мало, і він більше не може брати участь у реакціях, джерело енергії висихає. Але, як ми вже знаємо, зірка являє собою тонко збалансований механізм, у якому тиск, що роздуває зірку зсередини, цілком урівноважений гравітаційним притяганням. Отже, коли генерація енергії слабшає, тиск випромінювання різко падає, і сили тяжіння починають стискати зірку. Снову відбувається падіння речовини до її центра, багато в чому нагадуюче те, з якого почалося народження протозірки. Енергія, що виникає при гравітаційному стиску, набагато більше енергії, виділюваної тепер у ядерних реакціях, а раз так, то зірка починає швидко стискуватися. У результаті верхні шари зірки нагріваються, вона знову розширюється і росте в розмірах доти, поки зовнішні шари не стануть досить розрідженими, краще проникне випромінювання зірки. Думають, що зірка типу Сонця може збільшитися настільки, що заповнить орбіту Меркурія. Після того як зірка починає розширюватися, вона залишає головну послідовність і, як ми вже бачили, дні неї тепер полічені. З цього моменту життя зірки починає хилитися до заходу.

Коли зірка стискується, за рахунок роботи сил тяжіння виділяється величезна енергія, що роздуває зірку. Здавалося б, це повинно привести до спаду температури в ядрі. Але це не так. Проти чекання температура в ядрі зірки різко зростає. У відносно тонкому шарі навколо ядра усе ще відбувається звичайне ядерне вигоряння водню, що приводить до збільшення змісту гелію в ядрі. Коли в ядрі концентрується біля половини маси зірки, остання розширюється до свого максимального розміру і її колір з білого стає жовтим, а потім червоним, тому що температура поверхні зірки зменшується. Тепер зірка вступає в нову фазу. Температура ядра росте доти, поки не перевищить 200 млн. К. При такій температурі починає вигорати гелій, у результаті чого утвориться вуглець. Три ядра гелію, зливаючи, перетворюються в ядро вуглецю, що виявляється більш легенею, чим три вихідних ядра гелію, тому така реакція також йде з виділенням енергії. Снову тиск радіації, що грало настільки важливу роль, коли зірка знаходилася на головній послідовності, починає протидіяти тяжінню, і ядро зірки знову утримується від подальшого стиску. Зірка повертається до звичайних розмірів; у міру того як це відбувається, температура її поверхні росте, і вона з червоної стає білою.

У цей момент по деяких загадкових причинах зірка виявляється хитливою. Астрономи думають, що перемінні зірки, тобто зірки, що періодично змінюють своя світність, виникають на цій стадії зоряної еволюції, тому що процес стиску відбувається не гладко, і на деяких його етапах виникають ритмічні коливання зірки. На цій стадії зірка може пройти через фазу нової, протягом якої вона раптово викидає в міжзоряний простір значна кількість речовини; воно, приймаючи вид оболонки, що розширюється, може містити значну частину маси зірки. Спалахи деяких нових багаторазово повторюються, і це означає, що одного спалаху недостатньо, щоб зірка досягла стійкості. Але згодом вона здобуває стійкість, коливання зникають, зірка починає свій довгий шлях до зоряного цвинтаря. Навіть на цій стадії зірка ще здатна до активності. Вона може стати наднової. Причина, по якій зірка виявляється здатної на таку активність, обумовлена кількістю речовини, що остались у неї до цієї стадії.

Коли ми обговорювали процеси, що протікають у надрах зірки, ми говорили, що основним продуктом ядерних реакцій є гелій. У міру того як переробляється усе більше і більше водню, росте гелієве ядро зірки. Водень зникає, отже, енерговиділення за рахунок цього джерела також припиняється. Але при температурі близько 200 млн. До відкривається ще один шлях, випливаючи якому гелій породжує більш важкі елементи, і в цьому процесі виділяється енергія. Два атоми гелію з'єднуються, утворити атом берилія, що звичайно знову розпадається на атоми гелію. Однак температури і швидкості реакцій настільки високі, що, перш ніж відбувається розпад берилія, до нього приєднується третій атом гелію й утвориться атом вуглецю.

Але процес не зупиняється, тому що тепер атоми гелію, бомбардуючи вуглець, породжують кисень, бомбардуючи кисень, дають неон, а, бомбардуючи неон, роблять магній. На цій стадії температура ядра ще занадто низька для утворення більш важких елементів. Ядро знову стискується, і так продовжується доти, поки температура не досягне розмірупорядку мільярда градусів і не почнеться синтез більш важких елементів. Якщо в результаті подальшого стиску ядра температура піднімається до 3 млрд. ДО, важкі ядра взаємодіють один з одним доти, поки не утвориться залізо. Процес зупиняється. Якщо атоми гелію будуть бомбардувати ядра заліза, то замість утворення більш важких елементів відбудеться розпад ядер заліза.

На цій стадії життя зірки її ядро складається з заліза, оточеного шарами ядер більш легких елементів аж до гелію, а тонкий зовнішній шар утворений воднем, що ще забезпечує деяку кількість енергії. Нарешті настає час, коли водень виявляється цілком витраченим і цим джерелом енергії висихає. Перестають також діяти й інші механізми генерації енергії; зірка позбавляється всяких засобів для відтворення своїх енергетичних запасів. Це означає, що вона повинна вмерти. Тепер, вичерпавши запаси ядерної енергії, зірка може тільки стискуватися і використовувати гравітаційну енергію, щоб підтримати своє світіння. Зірка буде стискуватися і яскраво світитися. Коли ж і ця енергія висохне, зірка починає змінювати свій колір від білого до жовтого, потім до червоного; нарешті вона перестає випромінювати і починає безперервну подорож у неозорому космічному просторі у виді маленького темного безжиттєвого об'єкта. Але на шляху до вгасання звичайна зірка проходить стадію білого карлика.

Страницы: 1, 2, 3


ИНТЕРЕСНОЕ



© 2009 Все права защищены.