бесплатно рефераты
 

Эволюция Вселенной

p align="left">

Помимо вопроса о происхождении Вселенной, современные космологи сталкиваются с рядом других проблем. Чтобы стандартная теория большого взрыва могла предсказать то распределение материи, которое мы наблюдаем, ее исходное состояние должно характеризоваться очень высокой степенью организованности. Физик А. Гут из Массачусетского технологического института предложил свою версию теории большого взрыва, которая объясняет спонтанное возникновение этой организации, устраняя необходимость искусственно вводить точные параметры в уравнения, описывающие исходное состояние Вселенной. Его модель была названа «инфляционной Вселенной». Суть ее в том, что внутри быстро расширяющейся, пере гретой Вселенной небольшой участок пространства охлаждается и начинает расширяться сильнее, подобно тому, как переохлажденная вода стремительно замерзает, расширяясь при этом. Эта фаза быстрого расширения позволяет устранить некоторые проблемы, присущие стандартным теориям большого взрыва. Однако модель Гута тоже не лишена недостатков. Чтобы уравнения Гута правильно описывали инфляционную Вселенную, ему пришлось очень точно задавать исходные параметры для своих уравнений. Таким образом, он столкнулся с той же проблемой, что и создатели других теорий. Он надеялся избавиться от необходимости задавать точные параметры условий большого взрыва, но для этого ему пришлось вводить собственную параметризацию, оставшуюся необъясненной. Гут и его соавтор П. Штайнгарт признают, что в их модели «расчеты приводят к приемлемым предсказаниям только в том случае, если заданные исходные параметры уравнений варьируют в очень узком диапазоне. Большинство теоретиков (включая и нас самих) считают подобные исходные условия маловероятными». Далее авторы говорят о своих надеждах на то, что когда-нибудь будут разработаны новые математические теории, которые позволят им сделать свою модель более правдоподобной. Эта зависимость от еще не открытых теорий - другой недостаток модели Гута. Теория единого поля, на которой основывается модель инфляционной Вселенной, полностью гипотетична и «плохо поддается экспериментальной проверке, так как большую часть ее предсказаний невозможно количественно проверить в лабораторных условиях». Другой недостаток теории Гута - это то, что в ней ничего не говорится о происхождении перегретой и расширяющейся материи. Гут проверил совместимость своей инфляционной теории с тремя гипотезами происхождения Вселенной. Сначала он рассмотрел стандартную теорию большого взрыва. В этом случае, по мнению Гута, инфляционный эпизод должен был произойти на одной из ранних стадий эволюции Вселенной. Однако эта модель ставит перед нами неразрешимую проблему сингулярности. Вторая гипотеза постулирует, что Вселенная возникла из хаоса. Некоторые ее участки были горячими, другие - холодными, одни расширялись, а другие сжимались. В этом случае инфляция должна была начаться в перегретой и расширяющейся области Вселенной. Правда, Гут признает, что эта модель не может объяснить происхождение первичного хаоса. Третья возможность, которой Гут отдает предпочтение, заключается в том, что перегретый расширяющийся сгусток материи возникает квантово-механическим путем из пустоты. В статье, появившейся в журнале «Сайентифик Америкэн» в 1984 году, Гут и Штайнгарт утверждают: «Инфляционная модель Вселенной дает нам представление о возможном механизме, при помощи которого наблюдаемая Вселенная могла появиться из бесконечно малого участка пространства. Зная это, трудно удержаться от соблазна сделать еще один шаг и прийти к выводу, что Вселенная возникла буквально из ничего».

Однако какой бы привлекательной ни была эта идея для ученых, готовых ополчиться на любое упоминание о возможности существования высшего сознания, создавшего Вселенную, при внимательном рассмотрении она не выдерживает критики. «Ничто», о котором говорит Гут, - это гипотетический квантово-механический вакуум, описываемый еще не разработанной теорией единого поля, которая должна объединить уравнения квантовой механики и общей теории относительности. Другими словами, в данный момент этот вакуум невозможно описать даже теоретически.

Вернемся к изначальной проблеме, для решения которой Гут создал инфляционную модель: проблеме точной параметризации исходного состояния Вселенной. Без такой параметризации невозможно получить наблюдаемое распределение материи во Вселенной. Как мы убедились, решить эту проблему Гуту не удалось. Более того, сомнительной представляется сама возможность того, что какая-нибудь версия теории большого взрыва, включая версию Гута, может предсказать наблюдаемое распределение материи во Вселенной. Высокоорганизованное исходное состояние в модели Гута, по его же словам, в конце концов, превращается во «Вселенную» диаметром 10 сантиметров, наполненную однородным сверхплотным, перегретым газом. Она будет расширяться и остывать, но нет никаких оснований предполагать, что она когда-нибудь превратится в нечто большее, чем однородное облако газа. По сути дела, к этому результату приводят все теории большого взрыва. Если Гуту пришлось пускаться на многие ухищрения и делать сомнительные допущения, чтобы в конце концов получить Вселенную в виде облака однородного газа, то можно представить себе, каким должен быть математический аппарат теории, приводящей ко Вселенной в том виде, в каком мы ее знаем! Хорошая научная теория дает возможность предсказывать многие сложные природные явления, исходя из простой теоретической схемы. Но в теории Гута (и любой другой версии теории большого взрыва) все наоборот: в результате сложных математических выкладок мы получаем расширяющийся пузырь однородного газа. Теоретики прибегают к помощи так называемого «антропического принципа.

По их гипотезе, квантово-механический вакуум производит вселенные миллионами. Но в большинстве из них нет условий, необходимых для возникновения жизни, поэтому никто не может исследовать эти миры. В то же время в других вселенных, включая нашу собственную, сложились подходящие условия для появления исследователей, поэтому нет ничего удивительного в том, что в этих вселенных царит такой неправдоподобный порядок. Иначе говоря, сторонники антропического принципа принимают сам факт существования человека за объяснение упорядоченной структуры Вселенной, которая создала условия для возникновения человека. Однако подобные логические увертки ничего не объясняют. Следовательно, любая модель происхождения Вселенной, построенная на основе теории относительности, не способна объяснить наше восприятие времени, и потому все эти модели в их современном виде несовершенны и неприемлемы.

Будущее Вселенной

Современная наука, рассматривая дальнейшую судьбу Вселенной, останавливается на двух вариантах - открытой и замкнутой Вселенной. Если предположить, что Вселенная замкнута, в этом случае в течение 40-50 миллиардов лет ничего существенного не произойдет. Галактики будут все дальше разбегаться друг от друга, пока в какой-то момент самые дальние из них не остановятся и Вселенная не начнет сжиматься. На смену красному смещению спектральных линий придет синее. К моменту максимального расширения большинство звезд в галактиках погаснет, и останутся в основном небольшие звезды, беглые карлики и нейтронные звезды, а также черные дыры, окруженные роем частиц - в большинстве своем фотонов и нейтронов. Наконец, через примерно 100 миллиардов лет начнут сливаться воедино галактические скопления; отдельные объекты сначала будут сталкиваться очень редко, но со временем Вселенная превратится в однородное «море» скоплений. Затем начнут сливаться отдельные галактики, и, в конце концов, Вселенная будет представлять собой однородное распределение звезд и других подобных объектов. В течение всего коллапса в результате аккреции и соударений станут образовываться, и расти черные дыры. Будет повышаться температура фонового излучения; в конце концов, она почти достигнет температуры поверхности Солнца и начнется процесс испарения звезд. Перемещаясь на фоне ослепительно яркого неба, они подобно кометам будут оставлять за собой состоящий из паров след. Но вскоре все заполнит рассеянный туман и свет звезд померкнет. Вселенная потеряет прозрачность, как сразу же после Большого взрыва. (В гл. 6 мы видели, что/ранняя Вселенная была непрозрачной, пока ее температура не упала примерно до 3000К; тогда свет стал распространяться без помех.) По мере сжатия Вселенная, естественно, будет проходить те же стадии, что и при создании Вселенной, но в обратном порядке. Температура будет расти, и сокращающиеся интервалы времени начнут играть все большую роль. Наконец галактики тоже испарятся и превратятся в первичный «суп» из ядер, а затем распадутся и ядра. На этом этапе Вселенная станет крохотной и состоящей только из излучения кварков и черных дыр. В последнюю долю секунды коллапс дойдет почти до сингулярности. Что будет дальше - неизвестно, поскольку нет теории, которая годилась бы для описания сверхбольших плотностей, возникающих до появления сингулярности, можно лишь строить предположения.

В теории замкнутой Вселенной появилась так называемая идея «отскока» - внезапного прекращения сжатия, нового Большого Взрыва и нового расширения. Одной из причин первоначального введения идеи отскока была возможность обойти неприятную с точки зрения многих астрономов проблему возникновения Вселенной. Если отскок произошел один раз, то он мог случаться неоднократно, может быть, бесчисленное количество раз, поэтому не нужно и беспокоиться о начале времен. К сожалению, при подробной проработке такой идеи оказалось, что, и отскок не решает проблемы. В интервалах между отскоками звезды излучают значительное количество энергии, которая затем концентрируется при достижении состояния, близкого к сингулярности. Эта энергия должна постепенно накапливаться, из-за чего промежуток времени между последовательными отскоками будет возрастать. Значит, в прошлом эти промежутки были короче, а когда-то, в пределе, промежутка не было вовсе, т.е. мы приходим к тому, чего старались избежать, - проблеме начала Вселенной. Согласно расчетам, от начала нас должно отделять не более 100 циклов расширений и сжатий.

Многие предпринимали попытки обойти эту проблему. Томми Голд, например, разработал теорию, согласно которой в момент наибольшего расширения время начинает течь вспять. Излучение устремится обратно к звездам и Вселенная «омолодится». В таком случае она будет равномерно осциллировать между коллапсом и максимальным расширением. Весьма интересную, но очень спорную теорию предложил Джон Уиллер. Воспользовавшись идеей Хокинга, согласно которой фундаментальные константы «теряют» свои числовые значения при достаточно высоких плотностях, он показал, что цикл осцилляции не обязательно должен удлиняться. Из-за принципа неопределенности значения констант утрачиваются, когда Вселенная сжимается до почти бесконечной плотности. После возможного отскока и нового расширения эти константы могут получить совершенно иные значения. Продолжительность циклов в таких обстоятельствах также будет меняться, но случайным образом; одни циклы станут очень длинными, а другие короткими. Согласно противоположной теории, открытая Вселенная будет расширяться вечно. Первые события будут, конечно, аналогичны тем, которые происходят в замкнутой Вселенной. Звезды постепенно постареют, превратившись с течением времени в красных гигантов, либо взорвутся, либо медленно сколлапсируют и умрут. Некоторые из них, прежде чем погаснуть, столкнутся с другими звездами. Такие столкновения очень редки, и с момента образования нашей Галактики (по крайней мере, в ее внешних областях, где мы обитаем) их было совсем немного. Однако за триллионы и триллионы триллионов лет таких столкновений произойдет множество. Часть из них лишь сбросит в пространство планеты, а в результате других звезды окажутся на совершенно иных орбитах, некоторые даже вне пределов нашей Галактики. Если подождать достаточно долго, то нам покажется, что внешние области галактик испаряются.

Не выброшенные из галактик звезды в результате столкновений, скорее всего, будут притягиваться к центру, который, в конце концов, превратится в черную гигантскую дыру. Примерно через 10 (18) лет большинство галактик будет состоять из массивных черных дыр, окруженных роем белых карликов, нейтронных звезд, черных дыр, планет и различных частиц.

Дальнейшие события вытекают из современной единой теории поля, называемой теорией великого объединения. Из этой теории следует, что протон распадается примерно за 10 (31) лет. Сейчас ведется несколько экспериментов по обнаружению такого распада, а значит, и по проверке теории, Согласно ей, протоны должны распадаться на электроны, позитроны, нейтрино и фотоны. Отсюда следует, что, в конце концов, все, что состоит во Вселенной из протонов и нейтронов (а их не содержат только черные дыры), распадется на эти частицы. Вселенная превратится в смесь из них и черных дыр, и будет находиться в таком состоянии очень, очень долго. Когда-нибудь испарятся маленькие черные дыры, а вот с большими возникнут трудности. Фоновое излучение к тому времени будет очень холодным, но все же его температура останется чуть выше, чем у черных дыр. Однако по мере расширения Вселенной ситуация изменится - температура излучения станет ниже, чем на поверхности черных дыр, и те начнут испаряться, медленно уменьшаясь в размерах; на это потребуется примерно 10 (100) лет. Затем Вселенную заполнят электроны и позитроны, которые, вращаясь, друг вокруг друга, образуют огромные «атомы». Но постепенно позитроны и электроны, двигаясь по спирали, столкнутся и аннигилируют, в результате чего останутся только фотоны. Во Вселенной не будет ничего, кроме излучения.

Мы рассмотрели судьбу как открытой, так и закрытой Вселенной. Что ее ждет, пока неизвестно. Если даже Вселенная когда-нибудь сколлапсирует, неизвестно, произойдет ли потом «отскок». Одна из трудностей, на которую наталкивается традиционная теория Большого взрыва, - необходимость объяснить, откуда берется колоссальное количество энергии, требующееся для рождения частиц. Не так давно внимание ученых привлекла видоизмененная теория Большого взрыва, которая предлагает I ответ на этот вопрос. Она носит название теории раздувания, и была предложена в 1980 году сотрудником Массачусетского технологического института Аланом Гутом. Основное отличие теории раздувания от традиционной теории Большого взрыва заключается в описании периода с 10 (-35) до 10 (-32) с. По теории Гута примерно через 10 (-35) с Вселенная переходит в состояние «псевдовакуума», при котором ее энергия исключительно велика. Из-за этого происходит чрезвычайно быстрое расширение, гораздо более быстрое, чем по теории Большого взрыва (оно называется раздуванием). Через 10 (-35) с после образования Вселенная не содержала ничего кроме черных мини-дыр и «обрывков» пространства, поэтому при резком раздувании образовалась не одна вселенная, а множество, причем некоторые, возможно, были вложены друг в друга. Каждый из участков пены превратился в отдельную вселенную, и мы живем в одной из них. Отсюда следует, что может существовать много других вселенных, недоступных для нашего наблюдения. Хотя в этой теории удается обойти ряд трудностей традиционной теории Большого взрыва, она и сама не свободна от недостатков. Например, трудно объяснить, почему, начавшись, раздувание, в конце концов, прекращается. От этого недостатка удалось освободиться в новом варианте теории раздувания, появившемся в 1981 году, но в нем тоже есть свои трудности.

Жизнь во Вселенной

Изучение жизни во Вселенной - одна из сложнейших задач, с которой когда-либо встречалось человечество. Человек еще не побывал на других небесных телах, не видел пи одного внеземного живого организма. Все данные о жизни вне Земли, все без исключения, носят чисто гипотетический характер. Поэтому только глубокое исследование биологических закономерностей, с одной стороны, и космических явлений, - с другой, тщательнейшее сопоставление и анализ разнообразных данных, накопленных различными естественными науками, способны привести к успеху. В последние годы, в связи с успехами астрономии, биологии, физики и техники возникла самостоятельная научная дисциплина - «экзобиология». Ее основная задача - исследование небесных тел, в первую очередь планет солнечной системы и метеоритов, с точки зрения биологии. Кроме того, экзобиология занимается проблемами, близкими к космонавтике: изучением воздействия космических факторов на живые организмы. На первый взгляд может показаться, что вопрос о жизни во Вселенной - в `значительной степени отвлеченная проблема. Однако это не так. Исследование внеземных, космических форм жизни помогло бы человеку, во-первых, понять сущность жизни, т.е. то, что отличает все живые организмы от неорганической природы, во-вторых, выяснить пути возникновения и развития жизни и, в-третьих, определить место и роль человека во Вселенной. Кроме того, изучение особенностей жизни во Вселенной, ее приспособляемости к необычным с пашей земной точки зрения условиям намного расширило бы научные представления о жизненных процессах и помогло решить целый ряд практических задач земной биологии, медицины, сельского хозяйства.

Сейчас можно считать достаточно твердо установленным, что на нашей собственной планете жизнь возникла в отдаленном прошлом из неживой, неорганической материи при определенных внешних условиях. Из числа этих условий можно выделить три главных. Прежде всего, это присутствие воды, которая входит в состав живого вещества, живой клетки. Во-вторых, наличие газовой атмосферы, необходимой для газового обмена организма с внешней средой. Правда, можно представить себе и какую-либо иную среду, например, жидкую (в частности, водную), в которой может происходить газовый обмен. Однако все же есть основания предполагать, что газовая среда создает более широкие возможности для прогрессивного развития живых организмов. Третьим условием является наличие на поверхности данного небесного тела подходящего диапазона температур. Помимо этого, необходима внешняя энергия для синтеза молекулы живого вещества из исходных органических молекул, например, энергия космических лучей или ультрафиолетовой радиации или энергия электрических разрядов. Внешняя энергия нужна и для последующей жизнедеятельности живых организмов. В частности, мы сами получаем эту энергию с пищей, которая представляет собой не что иное, как своеобразный «концентрат» солнечной энергии. Условия, необходимые для возникновения жизни, в свое время сложились па нашей планете. И поскольку эти условия сложились естественным путем, в ходе эволюции Земли, нет никаких оснований считать, что они не могут складываться и в процессе развития других небесных тел.

Советский ученый, академик А.И. Опарин, автор популярной теории происхождения жизни, считает, что она должна была появиться тогда, когда поверхность нашей планеты представляла собой сплошной океан. Сначала в результате соединения углерода с водородом и азотом возникли простейшие органические соединения. Затем в водах первичного океана молекулы этих соединений объединились и укрупнились, образуя сложный раствор органических веществ. Наконец, на третьей стадии из этой среды выделились комплексы молекул, которые и дали начало первичным живым организмам.

Поскольку химическую основу жизни земного типа составляют соединения углерода, интересно оценить, насколько велика распространенность этого элемента и его соединений во Вселенной. Оказывается, достаточно велика! Во всяком случае, мы обнаруживаем углерод в газовых оболочках других планет, в атмосферах звезд, в ядрах комет и даже в облаках межзвездной материн. В этой связи интересно упомянуть об одной гипотезе, выдвинутой не так давно Оро и поддержанной известным советским ученым академиком В.Г Фесеиковым. Фесенков обратил внимание на то, что своеобразными переносчиками если не самой жизни, то, по крайней мере, ее исходных элементов могут быть кометы. В ядрах этих небесных тел содержится не только углерод, но и циан, окись и двуокись углерода, кислород, азот, метан и аммиак, т.е. как раз те самые элементарные кирпичики, из которых, согласно теории Опарина, возникают путем постепенного усложнения комплексы молекул, из которых в конечном итоге образуется живое вещество. Любопытны также выводы, к которым пришел совет-скип ученый Ковальский. Он считает, что при ударах кометных ядер о поверхность планет развиваются высокие давления, которые могут приводить к синтезу таких химических соединений, которые служат ступенью к образованию живого вещества. В печати появился также ряд сообщений о том, что углеводороды находили и в метеоритах. Действительно, углеводороды типа горного воска были обнаружены в метеоритах еще более ста лет назад. Но в последнее время исследования подобного рода проводились особенно интенсивно. Ученым удалось выделить из метеоритов сложные органические вещества, весьма близкие к тем, которые мы находим в живых организмах. Однако, по мнению ряда крупных ученых, в том числе академика Опарина, это вовсе еще не означает, что эти вещества каким-то образом связаны с явлениями жизни. Опыты показывают, что они могли образоваться в метеоритах и чисто химическим путем. Имеются также сообщения о том, что в некоторых тинах метеоритов обнаружены структурные образования, так называемые «организованные элементы»; некоторые исследователи считают их остатками живых организмов. Но при оценке этих данных необходимо учитывать одно важное обстоятельство. Дело в том, что подобные структуры, иногда весьма похожие по строению на живые формы, могут возникать чисто химическим путем, без каких-либо жизненных процессов. В то же время с астрономической точки зрения весьма трудно представить себе возможность возникновения и существования живых организмов на метеоритах. Что же касается гипотезы о переносе жизни кометами, то она хорошо согласуется с результатами некоторых лабораторных экспериментов, в ходе которых газообразная смесь водяных паров циана и аммиака подвергалась на протяжении ряда недель воздействию ультрафиолетовых лучей и тихих электрических разрядов. По истечении этого срока в смеси возникали составные части белков и нуклеиновых кислот - веществ, составляющих химическую основу жизни. В других опытах в условиях, также близких к тем, какие имеются в кометах, наблюдалось образование трехфосфорного аденозина. Это один из тех биологических катализаторов - «энзимой», которые управляют процессами, усложняющими первичное белковое вещество до простейшего организма. Не исключена, поэтому возможность, что на определенной стадии своего развития наша Земля, встретившись с кометой, получила от нее тот исходный химический материал, который мог ускорить течение процессов, ведущих к возникновению жизни. Согласно современным представлениям, кометы образовались в ходе единого процесса формирования пашей планетной системы. Вполне естественно предположить, что кометы имеются и в других планетных системах, а это значит, что и в других планетных системах, вероятно, существуют в исходном виде необходимые химические вещества для построения жизни. Таким образом, первоначальные продукты для образования живого вещества как будто налицо. Но ведь это только исходные предпосылки для возникновения жизни. Что же касается тех или иных путей формирования и развития живых организмов, то они непосредственно зависят от конкретных физических условий, от условий внешней среды. В данном случае речь идет не о приспособляемости организмов, оказавшихся в необычных условиях, а о том, что живые организмы отражают внешние условия, другими словами, их свойства складываются в процессе естественной эволюции. Все это приводит пас к заключению, что, с одной стороны, жизнь должна иметь достаточно широкое распространение во Вселенной и что, с другой стороны, в природе, вероятно, существует великое многообразие ее форм.

Проблема поиска внеземных цивилизаций

Одной из самых интересных тем астрономии является возможность существования внеземных цивилизаций. По этой теме постоянно продолжаются дискуссии, и единого мнения не существует. Но большинство современных астрономов и философов считают, что жизнь - распространенное явление во Вселенной и существует множество миров, на которых обитают цивилизации. Уровень развития некоторых внеземных цивилизаций может быть неизмеримо выше уровня развития земной цивилизации. Именно с такими цивилизациями землянам особенно интересно установить контакт. На развитие мнения о множестве цивилизаций повлияло несколько аргументов.

Во-первых, в Метагалактике есть огромное число звезд, похожих на наше Солнце, а следовательно планетные системы могут существовать не только у Солнца. И более того исследования показали, что некоторые звезды определенных спектральных классов вращаются медленно вокруг своей оси, что может быть вызвано наличием вокруг этих звезд планетных систем.

Во-вторых, при соответствующих условиях жизнь могла возникнуть на планетах других звезд по типу эволюционного развития жизни на Земле. Молекулярные соединения, необходимые для начальной стадии эволюции неживой природе, достаточно распространены во Вселенной и открыты даже в межзвездной среде.

В-третьих, возможно существование небелковых форм жизни, принципиально отличных от тех, которые распространены на Земле. Однако ничего конкретного о них науке не известно.

Не все ученые столь оптимистически относятся к проблеме внеземных цивилизаций. Сторонники противоположной точки зрения считают, что жизнь, и особенно разумная жизнь, - исключительно редкое, а может быть, и уникальное явление во Вселенной.

Итак, внеземные цивилизации по прежнему относятся к числу гипотетических объектов, поиск которых представляет огромный интерес. Продолжаются споры о реальности внеземных цивилизаций, но лишь дальнейшие наблюдения и эксперименты позволят выяснить, существуют ли где-нибудь обитаемые миры или мы одиноки, по крайней мере, в пределах нашей Галактики.

Заключение

Вселенная развивается и в наше время. В спиральных галактиках рождаются и умирают звезды. Вселенная продолжает расширяться. Мы знаем строение Вселенной в огромном объеме пространства, для пересечения которого свету требуются миллиарды лет. Но пытливая мысль человека стремится проникнуть дальше. Что лежит за границами наблюдаемой области мира? Бесконечна ли Вселенная по объему? И её расширение - почему оно началось и будет ли оно всегда продолжаться в будущем? А каково происхождение «скрытой» массы? И наконец, как зародилась разумная жизнь во Вселенной? Есть ли она ещё где-нибудь кроме нашей планеты? Окончательные и полные ответы на эти вопросы пока отсутствуют. Вселенная неисчерпаема. Неутомима и жажда знания, заставляющая людей задавать всё новые и новые вопросы о мире и настойчиво искать ответы на них. Наши дни с полным основанием называют золотым веком астрофизики - замечательные и чаще всего неожиданные открытия в мире звезд следуют сейчас одно за другим. Мы живем в эпоху поразительных научных открытий и великих свершений. Самые невероятные фантазии неожиданно быстро реализуются. С давних пор люди мечтали разгадать тайны Галактик, разбросанных в беспредельных просторах Вселенной. Приходится только поражаться, как быстро наука выдвигает различные гипотезы и тут же их опровергает. Однако астрономия не стоит на месте: появляются новые способы наблюдения, модернизируются старые. С изобретением радиотелескопов, например, астрономы могут «заглянуть» на расстояния, которые еще в 40-x. годах ХХ столетия казались недоступными. Однако надо себе ясно представить огромную величину этого пути и те колоссальные трудности, с которыми еще предстоит встретиться на пути к звездам.

Изучение Вселенной, даже только известной нам её части является грандиозной

задачей. Чтобы получить те сведения, которыми располагают современные ученые, понадобились труды множества поколений. Вселенная бесконечна во времени и пространстве. Каждая частичка Вселенной имеет свое начало и конец, как во времени, так и в пространстве, но вся Вселенная бесконечна и вечна так, как она является вечно самодвижущейся материей.

Вселенная - это всё существующее. От мельчайших пылинок и атомов до огромных скоплений вещества звездных миров и звездных систем.

Список используемой литературы

1. Рузавин Г.И. Концепции современного естествознания. - М.: Культура и спорт, ЮНИТИ, 1999. -288 с. http://filam.ru/view_manuel.php? id=97

2. Хорошавина С.Г. Концепции современного естествознания. Курс лекций. - Ростов н/Д: Феникс, 2005. - 480 с. http://www.alleng.ru/d/natur/nat017.htm

3. Самыгин С.И. Концепции современного естествознания: Сер. «Учебники и учебные пособия». - Ростов на Дону: «Феникс», 1997. - 448 с. http://www.alleng.ru/d/natur/nat009.htm

4. Иорданский Н.Н. Эволюция жизни. Учебное пособие для студ. высш. пед. учеб. заведений. - М.: Академия, 2001. - 432 с. http://www.alleng.ru/d/natur/nat020.htm

5. Фридман А.А. Мир как пространство и время. - М.: Наука, 1965. -110 с. http://ivanik3.narod.ru/linksBooksTO.html

6. Климишин И.А. Открытие Вселенной. М.: Наука, Гл. ред. физ.-мат лит., 1987. - 320 с.

Страницы: 1, 2, 3


ИНТЕРЕСНОЕ



© 2009 Все права защищены.