бесплатно рефераты
 

Астрономічна карта

арактеристики зірок діляться на видимі (найважливіша - блиск, який прийнято виражати в логарифмічній шкалі видимих зоряних величин) і істинні (світимість, колір зірок, радіус, маса). Найважливішу інформацію про властивості зірки дають їх спектри. Далі, існує класифікація зірок по світимості. Найпростіший вид цієї класифікації полягає в розділенні зірок на гіганти і карлики. При більш докладній класифікації виділяють надгіганти, субгіганти, субкарлики і т.п.

Як можливі джерела величезної енергії зірок сучасна фізика указує гравітаційне стиснення, що приводить до виділення гравітаційної енергії, і термоядерні реакції, в результаті яких з ядер легких елементів синтезуються ядра важчих елементів і виділяється велика кількість енергії. Енергії гравітаційного стиснення, як показують розрахунки, було б достатньо для підтримки світимості Сонця протягом всього лише 30 млн. років, тоді як з геологічних і ін. даних витікає, що світимість Сонця залишалася приблизно постійною протягом мільярдів років. Гравітаційне стиснення може служити джерелом енергії лише для дуже молодих зірок. З другого боку, термоядерні реакції протікають з достатньою швидкістю лише при температурах, в тисячі раз перевищуючих температуру поверхні зірки. В надрах зірок при температурах >10Е7 До і величезній густині газ володіє тиском в мільярди атмосфер. В цих умовах зірка може знаходитися в стаціонарному стані лише завдяки тому, що в кожному її шарі внутрішній тиск газу врівноважується дією сил тяжіння. Такий стан називається гідростатичною рівновагою. Отже, стаціонарна зірка є газовою (точніше, плазмовий) кулею, що знаходиться в стані гідростатичної рівноваги. Якщо усередині зірки температура з якої-небудь причини підвищиться, зірка повинна роздутися, оскільки зросте тиск в її надрах. Сили тяжіння не зможуть запобігти розширенню зірки, оскільки у поверхні зірки, що розширяється, вони зменшаться. Звідси витікає, що для збереження гідростатичної рівноваги зірки з великою температурою за інших рівних умов повинні мати менші розміри. Все сказане відноситься до хімічно однорідних (гомогенним) зоряних моделей, які цілком придатні для величезної більшості зірок. (такі зірки називаються зірками головної послідовності, до них відноситься і наше Сонце). Але існують зірки, процеси в яких описуються іншими моделями (напр., червоні гіганти). Стаціонарний стан зірки характеризується не тільки механічною, але і тепловою рівновагою: процеси виділення енергії в надрах зірок, процеси тепловідводу енергії з надр до поверхні і процеси випромінювання енергії з поверхні повинні бути збалансовані. Тому зірки - стійкі саморегульовані системи.

Світимість зірки (за винятком наймасивніших) пропорційна масі в ступені, що перевищує одиницю. Запас же ядерної енергії в зірках просто пропорційний масі. Отже, чим більше маса зірки, тим швидше вона повинна витратити свої внутрішні джерела енергії. Терміни еволюції тим менше ніж більше маси зірок. Для наймасивніших зірок світимість пропорційна масі. Час життя таких зірок у міру збільшення їх маси перестає зменшуватися і прагне певної величини порядка 3.5 млн. років, дуже малої по космічних масштабах. Таким чином, зірки з великим сяянням - це або молоді зірки (голубі гіганти класу Про), або зірки, еволюції, що недавно вступили в ту або іншу стадію (червонінадгіганти).

Відносну поширеність зірок різних типів в Галактиці можна охарактеризувати так: на 10 млн. червоних карликів доводиться близько 1 млн. білих карликів, приблизно 1000 гігантів і лише одна зірка-надгігант.

5. Народження астрономії

АСТРОНОМІЯ (від астро... і грец. nomos -- закон), наука про будову і розвиток космічних тіл, утворюваних ними систем і Всесвіту в цілому. Астрономія включає сферичну астрономію, практичну астрономію, астрофізику, небесну механіку, зоряну астрономію, позагалактичну астрономію, космогонію, космологію і ряд інших розділів. Астрономія -- якнайдавніша наука, що виникла з практичних потреб людства (прогноз сезонних явищ, рахунок часу, визначення місцеположення на поверхні Землі і ін.). Народження сучасної астрономії було пов'язано з відмовою від геоцентричної системи світу (Птолемей, 2 в.) і заміною її геліоцентричною системою (Н. Коперник, сірий. 16 в.), з початком телескопічних досліджень небесних тіл (Р. Галілей, поч. 17 в.) і відкриттям закону всесвітнього тяжіння (І. Ньютон, кон. 17 в.). 18-19 ст. були для астрономії періодом накопичення даних про Сонячну систему, Галактику і фізичну природу зірок, Сонця, планет і інших космічних тел. В 20 в. у зв'язку з відкриттям світу галактик стала розвиватися позагалактична астрономія. Дослідження спектрів галактик дозволило Э. Хабблу (1929) знайти загальне розширення Всесвіту, передбачене А. А. Фридманом (1922) на основі теорії тяжіння, створеної А. Эйнштейном в 1915-16. Науково-технічна революція 20 в. надала те, що революціонізувало дію на розвиток астрономії в цілому і астрофізики особливо. Створення оптичних і радіотелескопів з високим дозволом, вживання ракет і штучних супутників Землі для позаатмосферних астрономічних наглядів привели до відкриття цілого ряду нових видів космічних тіл: радіогалактик, квазарів, пульсарів, джерел рентгенівського випромінювання і ін. Були розроблені основи теорії еволюції зірок і космогонії Сонячної системи. Найбільшим досягненням астрофізики 20 в. стала релятивістська космологія -- теорія еволюції Всесвіту в цілому.

6. Комети і їх природа

Комети (від грец. kometes [aster] - "волохата [зірка]") - малі тіла Сонячної системи (разом з астероїдами і метеорними тілами), що рухаються по сильно витягнутих орбітах і різко міняючі свій вигляд з наближенням до Сонця. Комети - тіла, що утворилися в зовнішній частині Сонячної системи (включаючи область вищих планет).

Комети, знаходячись оддалік Сонця, виглядають як туманні, слабо світяться об'єкти (розмиті диски із згущуванням в центрі). З наближенням комет до Сонця у них утворюється "хвіст", звичайно направлений в протилежну від Сонця сторону. Усередині туманної плями, званої "головою" комети або комою, іноді видно порівняльне яскраве ядро, схоже на зірку, а навкруги голови - концентричні кільца-галоси. Ядро комети є великою глибою змерзлих газів, усередині якої знаходяться і тверді частинки, - від найдрібнішого пилу до крупних кам'янистих мас. Лід цей не зовсім звичайний, в ньому, окрім води, містяться аміак і Метан. Хімічний склад кометного льоду нагадує склад Юпітера. Поперечники ядер комети складають імовірно 0.5 - 20 км і мають масу порядка 1014 - 1019 р. Проте зрідка з'являються До. із значно великими ядрами. Численні ядра менше 0.5 км породжують слабкі комети, практично неприступні наглядам. Видимі поперечники голів До. складають звичайно від 10 тис. до 1 млн. км, змінюючись з відстанню від Сонця. У деяких комет максимальні розміри голови перевищували розміри Сонця. Ще більші розміри (понад 10 млн. км) мають оболонки з атомарного водню навкруги голови. Як правило, хвости бувають менш яскравими, ніж голова, і тому їх вдається спостерігати не у всіх комет. Довжина їх видимої частини складає 106 -107 км, тобто звичайно вони занурені у водневу оболонку. У деяких комет хвіст вдавалося прослідити до відстані понад 100 млн. км. В головах і хвостах До. речовина украй розріджений; не дивлячись на гігантський об'єм цих утворень, практично вся маса комети зосереджена в її твердому ядрі. Густина хвоста настільки нікчемна, що крізь нього просвічують слабкі зірки.

Назва " комета " пояснюється тим, що яскраві комети схожі на голову з розбещеним волоссям. Щорічно відкривають 5-10 комет. Кожну з них привласнюють попереднє позначення, що включає прізвище відкрив комету, рік відкриття і букву латинського алфавіту в порядку відкриття. Потім його замінюють остаточним позначенням, що включає рік проходження через перигелій і римську цифру в порядку дат проходження через перигелій.

Комети спостерігаються тоді, коли ядро комети наближається до Сонця ближче 4-6 а.о., нагрівається його промінням і починає виділяти газ і пилові частинки.

Більшість комет, що спостерігалися, належить Сонячній системі і звертається навкруги Сонця по витягнутих еліптичних орбітах різних розмірів, довільно орієнтованим в просторі. Розміри орбіт більшості До. в тисячі раз більше поперечника планетної системи. Поблизу афеліїв своїх орбіт комети знаходяться найбільшу частину часу, так що на далеких околицях Сонячної системи існує хмара комет - т.наз. хмара Оорта (на ім'я данського астронома, що запропонував дану теорію). Походження даної хмари зв'язано, мабуть, з гравітаційним викидом крижаних тіл із зони планет-гігантів під час їх освіти. Хмара Оорта містить порядка 100 млрд. кометних ядер. У комет, що віддаляються до периферичних частин хмари Оорта (їх відстані від Сонця можуть досягати 100 тис. а.о., а періоди обігу навкруги Сонця - 1-10 млн. років), орбіти міняються під дією тяжіння найближчих зірок. При цьому деякі комети придбавають параболічну швидкість по відношенню до Сонця (для таких далеких відстаней - порядка 0.1 км/с) і назавжди втрачають зв'язок з Сонячною системою. Інші (дуже небагато) придбавають при цьому швидкості порядка 1 м/с, що приводить до їх руху по орбіті з перигелієм поблизу Сонця, і тоді вони стають доступними для наглядів. У всіх комет при їх русі в області, зайнятою планетою, орбіти змінюються під дією тяжіння планет. При цьому серед комет, що прийшли з периферії хмари Оорта, близько половини придбаває гіперболічні орбіти і втрачається в міжзоряному просторі, У інших, навпаки, розміри орбіт зменшуються, і вони починають частіше повертатися до Сонця.

Комети, що належать Сонячній системі, час від часу (з періодами від 3.3 року, як у комети Енке, до декількох десятків тисяч років) проходять поблизу Сонця і називаються періодичними. Оддалік Сонця комета тьмяно освітлюється його промінням, не має хвоста і не доступна для наглядів. У міру наближення до Сонця, її освітлення посилюється, замерзлі гази ядра, що нагріваються сонячним промінням, випаровуються і закутують ядро газопиловою оболонкою, створюючою голову комети. Під дією світлового тиску з боку сонячного проміння і елементарних частинок, що викидаються Сонцем, газ і пил йдуть від голови комети, утворюючи хвіст, який в більшості випадків направлений убік від Сонця і, залежно від природи вхідних в нього частинок, може мати різну форму, від майже ідеально прямій (хвіст складається з іонізованих газових молекул) до різко викривленої (хвіст з важких пилових частинок). У деяких комет спостерігаються невеликі аномальні хвости, направлені до Сонця. Деякі комети мають два хвости: один викривлений, складався з частинок пилу; інший - прямий, газовий, витягнутий в напрямі, точно протилежному напряму на Сонці. У ряду комет було помічено по декілька пилових хвостів. Спостерігалися комети, хвости яких пнулися майже на півнеба.

Форма хвоста описується наступною шкалою: 0 - хвіст прямий; 1 - злегка відхилюючий; 2 - помітно зігнутий; 3 - різко зігнутий; 4 - направлений до Сонця.

Видима довжина кометного хвоста оцінюється в градусах дуги. Якщо видне ядро комети, то його блиск оцінюється подібно блиску змінних зірок.

Чим частіше комета підходить до Сонця, тим швидше вона втрачає свою речовину. Тому періодичні До., які йдуть від Сонця порівняно недалеко (наприклад, до орбіти Юпітера або сатурна) і часто до нього повертаються (короткоперіодичні; їх відомо близько 100), не можуть бути яскравими. Вони не видні неозброєним оком. Навпаки, довгоперіодичні До. з великими періодами обігу навкруги Сонця поблизу нього звичайно вельми яскраві і видні неозброєним оком.

7. Календарі

Календар (від лат. calendarium - "боргова книга": в римському місячному календарі перше число кожного місяця називалося "календами" - Calendae, і цього дня відбувалися сплати відсотків по боргах) - система, що дозволяє погоджувати тривалість середніх сонячних діб з іншими, більш тривалими періодичними явищами (зміною пір року, фазами Місяця і т.п.), і звичайно вживана для рахунку тривалих проміжків часу. Календар виник на зорі становлення цивілізації і генетично споріднений астрології. Вже в глибокій старовині люди помітили, що проміжки часу, сприятливі для тієї або іншої діяльності, повторюються з певною періодичністю. Наприклад, час, сприятливий для посіву, повторюється приблизно через 365 змін дня і ночі, а повний місяць, що сприяє нічному полюванню, повторюється кожні 29-30 діб. Не менше важливе значення мало точне визначення моментів часу, найсприятливіших для здійснення жертвопринесень богам, магічних дій і т.п. Подібні функції календарі схожі з функціями астрології. Підтвердженням цього є і те, що у деяких народів астрологія пов'язана з календарями не менше ніж з положеннями план, а іноді і зовсім заснована тільки на календарі. Основна проблема, з якою зіткнулися вже стародавні творці календаря, полягає в тому, що ні тривалість тропічного року, ні тривалість сінодичного місяця не рівні цілому числу доби. Більш того, неможливо підібрати яке-небудь ціле число тропічних років (або сінодичних місяців, в якому б містилося ціле число доби). В старовині ця проблема ускладнювалася ще і тим, що не були точно відомі тривалість тропічного року і сінодичного місяця.

Календарі, в яких використовувався тропічний рік (сонячні календарі), складалися перш за все в сільськогосподарських цілях для визначення сезонів польових робіт. Основною проблемою при розробці цих календарів була проблема високосів, яка дозволила б зробити календар наскільки можливо точним. В даний час найширше поширення набув григоріанський календар з досить зручною системою високосних років. Погрішність в 1 доби в ньому нагромаджується приблизно за 3300 років. Сонячними календарями є також юліанський календар і Хайяма календар.

Календарі, засновані на синодичному місяці (місячні календарі), використовувалися звичайно для культових цілей, оскільки були непридатні для визначення термінів сільськогосподарських робіт (один і той же місяць в різні роки доводився на різні пори року). Головним в розробці систем місячного було підібрати таке число цілих місячних років по 354 і 355 днів, щоб тривалість цього періоду була найбільш близька до цілого числа. Найвдалішими співвідношеннями є: 354.36706 x 8 = 2834.936 днів; 354.36706 х 30 = 10641.012 днів (354.36706 - тривалість 12 місячних місяців). Тільки ця рівність і одержали вживання у всіх діючих місячних календарів. Перше з них називається турецьким циклом, друге - арабським циклом. Вони засновані на відповідних дробах 3/8 і 11/30 відповідно. Місячний календар використовувався в Стародавньому Вавілоні, Давньому Єгипті, Греції, Римі, а в країнах ісламу він у вживанні і до цього дня. Використовування місячного календаря, що не дозволяє точно визначити початок сезонів року, приводило до необхідності використовувати календарні прикмети, пов'язані з сонячним роком.

Календар, що дозволяє погоджувати тропічний рік, синодичний місяць і середні сонячні доби, називається місячно-сонячним. В такому календарі повинні дотримуватися дві умови: необхідно, щоб початки календарних місяців можливо ближче розташовувалися до молодика, а сума деякого числа цілих місячних місяців (12, але в метоновому циклі 7 разів протягом 19 років - 13 місяців) можливо точніше відповідала істинній тривалості тропічного року, чим досягається приблизне узгодження зміни місячних фаз з річним рухом Сонця. місячно-сонячні календарі дуже громіздкі, сьогодні вони використовуються в основному в країнах Південно-східної Азії.

Астрологічні системи, що базуються на календарних розрахунках, є одним з найраніших етапів розвитку астрології. Якщо астрологія ознак тяжіла до накопичення емпіричних наглядів, то тут, навпаки, рано виявилася тенденція до теоретичних узагальнень. Після того, як були виділені основні календарні цикли (тиждень, місяць, рік і ін.), фазам цих циклів були приписані свої значення. Загальною для двох якнайдавніших видів астрології була наявність нерозривного зв'язку з ворожінням. Відмінність полягала в тому, що астрологія ознак вимагала численних і ретельних наглядів за різними явищами в природі (астрономічними, метеорологічними, сейсмічними і т.п.). Календарна ж астрологія потребувала набагато меншої кількості наглядів, але в більшій кількості розрахунків.

8. Сонце і життя землі

Сонячне випромінювання, падаюче на Землю, загалом дуже стабільне, інакше життя на Землі піддавалося б дуже великим температурним перепадам. В даний час супутники дуже ретельно зміряли енергію, випромінювану Сонцем, і показали, що сонячна постійна не постійна, а схильна варіаціям в межах десятих часток відсотка, причому довгоперіодичні варіації пов'язані з сонячним циклом (Сонячна постійна - кількість сонячної енергії, що приходить на поверхню площею 1 кв.м, розгорнену перпендикулярно сонячному промінню в космосі) Від максимуму до мінімуму сонячна постійна зменшується приблизно на 0.1%, тобто під час максимуму активності (багато плям на Сонце) воно випромінює як би більше. Такі зміни також можуть мати вплив на земний клімат. В Маундеровській мінімум (1645-1715) було дуже мало плям. Цей період відомий на Землі як малий льодовиковий період: в цей час було набагато холодніше, ніж зараз. У принципі це може бути простим збігом, але швидше за все, ці події мають причинний зв'язок.

Глибина проникнення сонячної радіації в атмосферу Землі залежить від довжини хвилі його випромінювання. На щастя для життя, оксид азоту в тонкому шарі атмосфери на висоті вище 50 км над поверхнею Землі блокує дуже змінне короткохвильове ультрафіолетове випромінювання Сонця. На менших висотах озон і молекулярний кисень поглинають довгохвильову частину ультрафіолетового випромінювання, яке також шкідливе для життя. Зміни сонячного ультрафіолетового випромінювання впливають на структуру озонового шару.

На Землю надає дію також так званий сонячний вітер, обумовлений спокійним випуском коронарної плазми. Сонячний вітер дуже сильно впливає на хвости комет і навіть має вимірювані ефекти впливу на траєкторію супутників. Заряджені частинки з сонячного вітру відповідальні за північні і південні полярні сяйва, коли вони пронизують земну атмосферу на високій швидкості і примушують її світитися.

Випуск Сонцем заряджених частинок, яке залежить в основному від умов в шарах, розташованих вище за фотосферу, також міняється в циклі сонячної активності. Найбільше значення серед цих частинок з погляду впливу на земні процеси мають високоенергійні протони, які викидаються при вибухах в сонячній короні (одночасно викидаються також високоенергійні електрони).

Високоенергійні сонячні протони, що приходять до Землі, мають енергії від 10 млн. до 10 млрд. еВ (для порівняння енергія фотона видимого світла складає близько 2 еВ). Найенергійніші протони рухаються з швидкістю, близькою до швидкості світла, і досягають Землі приблизно через 8 мін після наймогутніших сонячних спалахів. Такі спалахи пов'язані з колосальними виверженнями в активних областях Сонця, які різко збільшують свою яскравість в рентгенівському і крайньому ультрафіолетовому діапазонах. Вважається, що джерелом енергії спалахів є швидке взаємозвищення (анігіляція) сильних магнітних полів, при якій відбувається розігрівання плазми і виникають могутні електричні поля, прискорюючі заряджені частинки. Ці частинки здатні зробити різноманітний вплив на людей знаходяться у цей момент не під захистом земного магнітного поля.

Могутні протонні спалахи є важливим чинником для планування польотів на цивільних авіалініях, особливо проходячих в полярних широтах, де силові лінії земного магнітного поля направлені перпендикулярно поверхні Землі і тому дозволяють зарядженим частинкам досягати нижніх шарів атмосфери. Пасажири в цьому випадку піддаються підвищеному радіаційному опромінюванню. Ще більш сильну дію такі явища можуть надавати на екіпажі космічних апаратів, особливо тих, які літають на орбітах, що проходять через полюси. Спостерігався також вплив протонних спалахів на функціонування обчислювальних систем. Так, в серпні 1989 року одна така подія паралізувала роботу обчислювального центру фондової біржі в Торонто. Протягом сонячного циклу відбувається лише декілька десятків таких могутніх спалахів, і їх частота значно вище в його максимумі, ніж в мінімумі.

Зміни потоку плазми сонячного вітру, оточуючого Землю, приводять до дії зовсім іншого вигляду. Ця відносно низько енергійна плазма як би тікає з сонячної корони, долаючи через високу температуру гравітаційне тяжіння Сонця. Магнітне поле Землі впливає на заряджені частинки сонячного вітру і не дозволяє їм наблизитися до поверхні планети. Простір навкруги Землі, в який в основному не можуть проникати частинки сонячного вітру, називають земною магнітосферою. Спалахи і інші різкі зміни магнітних полів на Сонці приводять до обурень в сонячному вітрі і змінюють тиск плазми на земну магнітосферу. Пов'язані з дією сонячного вітру зміни геомагнітного поля складають лише біля 0,1% його напруженості, рівної приблизно 1 Гс. Проте індуковані навіть такими малими змінами геомагнітного поля електричні струми в довгих провідниках на поверхні Землі (таких як високовольтні лінії або труби нафтопроводів) можуть приводити до драматичних наслідків. Довгий час робилися численні спроби знайти зв'язок між сонячною активністю і погодою, Видатний англійський астроном Уїльям Гершель припустив, що Сонце найбільш яскраво світить при максимумі сонячних плям, а підвищення температури в цей період було б повинне було приводити до збільшення урожаю пшениці і відповідно падінню цін на неї. В 1801 р. він заявив, що ціна на пшеницю дійсно корелює з циклом сонячних плям. Кореляція, проте, виявилася недостовірною, і Гершель став займатися іншими проблемами. Багато таких уявних зв'язків виявилися недовговічними, і всі вони мали той недолік, що були швидше статистичними, ніж причинними. Ніхто ще не запропонував розумний механізм, за допомогою якого такі малі зміни сонячної постійної могли б відчутно впливати на земні процеси.

9. Сонце - ближня зірка

Сонце є сферично симетричним тілом, що знаходиться в рівновазі. Усюди на однакових відстанях від центру цієї кулі фізичні умови однакові, але вони помітно міняються у міру наближення до центру. Густина і тиск швидко наростають в глибінь, де газ сильніше стислий тиском вищерозміщених шарів. Отже, температура також росте у міру наближення до центру. Залежно від зміни фізичних умов Сонце можна розділити на декілька концентричних шарів, поступово перехідних один в одного.

В центрі Сонця температура складає 15 млн. градусів, а тиск перевищує сотні мільярдів атмосфер. Газ стислий тут до густини близько 1,5·105 кг/м3. Майже вся енергія Сонця генерується в ядрі - центральної області з радіусом приблизно 1/3 сонячного.

Через шари, що оточують центральну частину, ця енергія передається назовні. Спочатку енергія переноситься випромінюванням. Проте кожний фотон затрачує мільйони років для того, щоб пройти зону випромінювання: світло багато разів поглинається речовиною і випромінюється знов. Вважається, що зона випромінювання тягнеться приблизно на 1/3 радіусу Сонця.

Протягом останньої третини радіусу знаходиться зона конвекції. Причина виникнення перемішування (конвекції) в зовнішніх шарах Сонця та ж, що і в киплячому чайнику: кількість енергії, поступаючі віднагрівача, набагато більше того, яке відводиться теплопровідністю. Тому речовина вимушена приходить в рух і починає саме переносити тепло.

Всі розглянуті вище шари Сонця фактичноне спостерігаємі. Про їх існування відомо або з теоретичних розрахунків, або на підставі непрямих даних.

Над конвективною зоною розташовуються безпосередньо спостережувані шари Сонця, звані його атмосферою. Вони краще вивчені, оскільки про їх властивості можна судити з наглядів.

Сонячна атмосфера також складається з декількох різних шарів. Найглибший і тонкий з них - фотосфера, безпосередньо спостережувана у видимому безперервному спектрі. Товщина фотосфери всього близько 300 км. Чим глибше шари фотосфери, тим вони гарячіше. В зовнішніх більш холодних шарах фотосфери на фоні безперервного спектру утворюються фраунгоферові лінії поглинання.

Під час найбільшого спокою земної атмосфери в телескоп можна спостерігати характерну зернисту структуру фотосфери. Чергування маленьких світлих плямочок - гранул - розміром близько 1000 км., оточених темними проміжками, створює враження комірчастої структури - грануляції. Виникнення грануляції пов'язано з конвекцією, що відбувається під фотосферою. Окремі гранули на декілька сотень градусів гарячіше навколишнього їх газу, і в перебігу декількох хвилин їх розподіл по диску Сонця міняється. Спектральні вимірювання свідчать про рух газу в гранулах, схожих на конвективні: в гранулах газ підіймається, а між ними - опускається.

Розповсюджуючись у верхні шари сонячної атмосфери, хвилі, що виникли в конвективній зоні і у фотосфері, передають їм частину механічної енергії конвективних рухів і проводять нагрівання газів подальших шарів атмосфери - хромосфери і корони. В результаті верхні шари фотосфери з температурою близько 4500K виявляються "найхолоднішими" на Сонці. Як углиб, так і вгору від них температура газів швидко росте.

Розташований над фотосферою шар, званий хромосферою, під час повних сонячних затьмарень в ті хвилини, коли Місяць повністю закриває фотосферу, видний як рожеве кільце, що оточує темний диск. На краю хромосфери спостерігаються виступаючі як би язички полум'я - хромосферні спікули, представляючі собою витягнуті стовпчики з ущільненого газу. Тоді ж можна спостерігати і спектр хромосфери, так званий спектр спалаху. Він складається з яскравих емісійних ліній водню, гелію, іонізованого кальцію і інших елементів, які раптово спалахують під час повної фази затьмарення. Виділяючи випромінювання Сонця в цих лініях, можна одержати в них його зображення. Хромосфера відрізняється від фотосфери значно більш неправильною і неоднорідною структурою. Помітні два типи неоднородностей - яскраві і темні. За своїми розмірами вони перевищують фотосферні гранули. В цілому розподіл неоднородностей утворює так звану хромосферну сітку, особливо добре помітну в лінії іонізованого кальцію. Як і грануляція, вона є слідством рухів газів в підфотосферній конвективній зоні, що тільки відбуваються в більш крупних масштабах. Температура в хромосфері швидко росте, досягаючи у верхніх її шарах десятків тисяч градусів.

Страницы: 1, 2


ИНТЕРЕСНОЕ



© 2009 Все права защищены.